
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

TOBIAS ACHTERBERG, ROBERT E. BIXBY, ZONGHAO GU,
EDWARD ROTHBERG, AND DIETER WENINGER

Presolve Reductions in Mixed Integer
Programming

This work has been supported by the Research Campus MODAL Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of Education
and Research (BMBF Grant 05M14ZAM). All responsibility for the content of this publication is assumed by the authors.

ZIB Report 16-44 (September 2016)

Zuse Institute Berlin
Takustr. 7
D-14195 Berlin

Telefon: +49 30-84185-0
Telefax: +49 30-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Presolve Reductions in Mixed Integer Programming

Tobias Achterberg∗ Robert E. Bixby∗ Zonghao Gu∗

Edward Rothberg∗ Dieter Weninger†

December 9, 2016

Abstract

Mixed integer programming has become a very powerful tool for
modeling and solving real-world planning and scheduling problems,
with the breadth of applications appearing to be almost unlimited. A
critical component in the solution of these mixed-integer programs is
a set of routines commonly referred to as presolve. Presolve can be
viewed as a collection of preprocessing techniques that reduce the size
of and, more importantly, improve the “strength” of the given model
formulation, that is, the degree to which the constraints of the formu-
lation accurately describe the underlying polyhedron of integer-feasible
solutions. As our computational results will show, presolve is a key fac-
tor in the speed with which we can solve mixed-integer programs, and
is often the difference between a model being intractable and solvable,
in some cases easily solvable. In this paper we describe the presolve
functionality in the Gurobi commercial mixed-integer programming
code. This includes an overview, or taxonomy of the different methods
that are employed, as well as more-detailed descriptions of several of
the techniques, with some of them appearing, to our knowledge, for
the first time in the literature.

1 Introduction

Presolve for mixed integer programming (MIP) is a set of routines that
remove redundant information and strengthen a given model formulation
with the aim of accelerating the subsequent solution process. Presolve can
be very effective; indeed, in some cases it is the difference between a problem
being intractable and solvable, see Achterberg and Wunderling [5].

∗Gurobi Optimization, {achterberg,bixby,gu,rothberg}@gurobi.com
†University Erlangen-Nürnberg, dieter.weninger@math.uni-erlangen.de

1

In this paper we differentiate between two distinct stages or types of
presolve. Root presolve refers to the part of presolve that is typically applied
before the solution of the first linear programming relaxation, while node
presolve refers to the additional presolve reductions that are applied at the
nodes of the branch-and-bound search tree.

Several papers on the subject of presolve have appeared over the years,
though the total number of such publications is surprisingly small given the
importance of this subject. One of the earliest and most important contribu-
tions was the paper by Brearly et al. [13]. This paper describes techniques
for removing redundant rows, fixing variables, identifying generalized up-
per bounds, and more. Presolve techniques for zero-one inequalities were
investigated by Guignard and Spielberg [23], Johnson and Suhl [26], Crow-
der et al. [16], and Hoffman and Padberg [24]. Andersen and Andersen [6]
published results in the context of linear programming and Savelsbergh [34]
investigated preprocessing and probing techniques for general MIP problems.
Details on the implementation of various presolve reductions are discussed in
Suhl and Szymanski [36], Atamtürk and Savelsbergh [8], and Achterberg [2].

Investigations of the performance impact of different features of the
CPLEX MIP solver were published in Bixby et al. [11] and Bixby and Roth-
berg [12], and most recently in Achterberg and Wunderling [5]. One impor-
tant conclusion was that presolve together with cutting plane techniques
are by far the most important individual tools contributing to the power of
modern MIP solvers.

This paper focuses on the presolve algorithms that are applied in the
Gurobi commercial MIP solver. Our main contribution is to provide a com-
plete overview of all the presolve steps in Gurobi version 6.5 and to give
sufficient implementation details and computational results to illustrate the
ideas and effectiveness of the presolve reductions.

The paper is organized as follows. Section 2 introduces the primary
notation used in the remainder of the paper. Sections 3 to 8 constitute
the main part of the paper; they describe the individual components of the
Gurobi presolve engine and provide computational results to assess their
performance impact. We summarize our conclusions in Section 9.

1.1 Benchmarking

Our computational experiments have been conducted on machines with a
single 4-core Intel i7-3770K CPU running at 3.5 GHz and with 32 GB RAM.
As a reference we use Gurobi 6.5 in default settings with a time limit of 3600
seconds. For each test the reference solver is compared to a version in which

2

Table 1: Impact of disabling presolve
default disable presolve affected

bracket models tilim tilim faster slower time nodes models time

all 3047 547 1035 255 1755 3.36 1.27 — —
≥ 0 sec 2511 16 504 255 1755 4.52 1.91 2411 4.80
≥ 1 sec 1944 16 504 210 1634 6.60 2.12 1929 6.73
≥ 10 sec 1575 16 504 141 1380 9.05 2.29 1564 9.23
≥ 100 sec 1099 16 504 86 983 12.36 2.43 1095 12.50
≥ 1000 sec 692 16 504 34 643 19.48 2.17 691 19.57

certain presolve reductions have been disabled (or non-default ones have
been enabled) in the master MIP solve by modifying the source code. Note
that we always keep the reductions enabled in sub-MIP solves, to avoid
an implicit modification of primal heuristic behavior, where the automatic
decisions whether to actually conduct a sub-MIP solve depend on the success
of presolving in the sub-MIP.

The test set consists of 3182 problem instances from public and com-
mercial sources. It represents the subset of models of our mixed integer
programming model library that we have been able to solve within 10000
seconds using some one of the Gurobi releases.

We present our results in a similar form to that used in Achterberg and
Wunderling [5]. Consider Table 1 as an example, which shows the effect
of turning off presolve (including root and node presolve) completely. In
the table we group the test set into solve time brackets. The “all” bracket
contains all models of the test set, except those that have been excluded
because the two solver versions at hand produced inconsistent answers re-
garding the optimal objective value. This can happen due to the use of
floating point arithmetic and resulting numerical issues in the solving pro-
cess. The “≥ n sec” brackets contain all models that were solved by at least
one of the two solvers within the time limit and for which the slower of the
two used at least n seconds. Thus, the more difficult brackets are subsets of
the easier ones. In the discussion below, we will usually use the “≥ 10 sec”
bracket, because this excludes the relatively uninteresting easy models but
is still large enough to draw meaningful conclusions.

Column “models” lists the number of models in each bracket of the
test set. The “default tilim” column shows the number of models for which
Gurobi 6.5 in default settings hits the time limit. The second “tilim” column
contains the same information for the modified code. As can be seen, a
very large number of problem instances become unsolvable when presolve
is disabled: 531 models of the full test set cannot be solved by either of

3

the two versions, 16 models can only be solved with presolving disabled,
but enabling presolve is essential to solve 504 of the models within the time
limit. Note that all solve time brackets have identical numbers in the “tilim”
columns because, by definition, a model that hits the time limit for one of
the two solvers will be part of every time bracket subset.

The columns “faster” and “slower” list the number of models that get
at least 10% faster or slower, respectively, when the modified version of the
code is used. Column “time” shows the ratio of the shifted geometric means
of solve times, using a shift of 1 second, see Achterberg [2]. Values larger
than 1.0 mean that the modified version is slower than the reference solver.
Similarly, column “nodes” lists the ratio of shifted geometric means of the
number of branch-and-bound nodes required to solve the models, again using
a shift of 1. Finally, the two “affected” columns repeat the “models” and
“time” statistics for the subset of models for which the solving process was
affected by the code change. As an approximate check for a model being
affected we compare the total number of simplex iterations used to solve
a model and call the model “affected” if this number differs for the two
versions. We are not providing “affected” statistics for the “all” model set,
because for models that hit the time limit in both versions it cannot be
inferred from the iteration and node counts whether the solving path was
different.

As can be seen in Table 1, presolving is certainly an essential component
of MIP solvers. The number of time-outs increases by 488, and the average
solve time in the “≥ 10 sec” bracket is scaled up by a factor of nine when
presolving is turned off. Note that our results are in line with the findings of
Achterberg and Wunderling [5], who measured a degradation factor of 11.4
in the “≥ 10 sec” bracket for disabling presolve in CPLEX, using a time
limit of 10000 seconds.

2 Notation

Definition 1. Given a matrix A ∈ Rm×n, vectors c ∈ Rn, b ∈ Rm, ` ∈
(R∪{−∞})n, u ∈ (R∪{∞})n, variables x ∈ RN with xj ∈ Z for j ∈ I ⊆ N =
{1, . . . , n}, and relations ◦i ∈ {=,≤,≥} for every row i ∈ M = {1, . . . ,m}
of A, then the optimization problem MIP = (M,N, I,A, b, c, ◦, `, u) defined
as

min cTx
s.t. Ax ◦ b

` ≤ x ≤ u
xj ∈ Z for all j ∈ I

(2.1)

4

is called a mixed integer program (MIP). We denote by

PMIP = {x ∈ RN : Ax ◦ b, ` ≤ x ≤ u, xj ∈ Z for all j ∈ I}

the set of feasible solutions for the MIP and by

PLP = {x ∈ RN : Ax ◦ b, ` ≤ x ≤ u}

the set of feasible solutions for the LP relaxation of the MIP.

Note that in the above definition, we have employed the convention that,
unless otherwise specified, vectors such as c and x, when viewed as matrices,
are considered column vectors, that is, as matrices with a single column.
Similarly, a row vector is a matrix with a single row.

The elements of the matrix A are denoted by aij , i ∈ M , j ∈ N . We
use the notation Ai· to identify the row vector given by the i-th row of
A. Similarly, A·j is the column vector given by the j-th column of A.
With supp (Ai·) = {j ∈ N : aij 6= 0} we denote the support of Ai·, and
supp (A·j) = {i ∈ M : aij 6= 0} denotes the support of A·j . For a subset
S ⊆ N we define AiS to be the vector Ai· restricted to the indices in S.
Similarly, xS denotes the vector x restricted to S.

Depending on the bounds ` and u of the variables and the coefficients
in A, we can calculate a minimal activity and a maximal activity for every
row i of problem (2.1). Because lower bounds `j = −∞ and upper bounds
uj =∞ are allowed, infinite minimal and maximal row activities may occur.
To ease notation we introduce the following conventions:

∞+∞ :=∞ s · ∞ :=∞ s · (−∞) := −∞ for s > 0

−∞−∞ := −∞ s · ∞ := −∞ s · (−∞) :=∞ for s < 0

We can then define the minimal activity of row i by

inf{Ai·x} :=
∑
j∈N
aij>0

aij`j +
∑
j∈N
aij<0

aijuj (2.2)

and the maximal activity by

sup{Ai·x} :=
∑
j∈N
aij>0

aijuj +
∑
j∈N
aij<0

aij`j . (2.3)

In an analogous fashion we define the minimal and maximal activity inf{AiSxS}
and sup{AiSxS} of row i on a subset S ⊆ N .

5

Table 2: Impact of disabling all single-row reductions
default disable single-row reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3047 552 565 489 957 1.13 1.02 — —
≥ 0 sec 2536 46 59 489 957 1.16 1.06 2281 1.17
≥ 1 sec 1755 46 59 467 872 1.22 1.08 1700 1.22
≥ 10 sec 1251 46 59 361 651 1.26 1.06 1223 1.26
≥ 100 sec 720 46 59 224 379 1.30 1.02 706 1.29
≥ 1000 sec 272 46 59 95 141 1.32 0.94 269 1.33

Obviously, a constraint with ◦i = “≥” can easily be converted into a
constraint with ◦i = “≤” by multiplying the row vector and right hand
side by −1. For this reason, we will usually only consider one of the two
inequality directions in the description of the presolve reductions.

3 Reductions for individual constraints

This section covers the single-row presolve reductions as implemented in
Gurobi. These are problem transformations that consider only one of the
constraints of the problem at a time, plus the bounds and integrality of
the variables. Thus, the reductions in this section are also valid for the
relaxation of (2.1)

min cTx
s.t. Ai·x ◦i bi

` ≤ x ≤ u
xj ∈ Z for all j ∈ I

(3.1)

that inclucdes only a single row i ∈M .
Table 2 shows the total performance impact of disabling all of the single-

row reductions. As expected, almost all models are affected by these reduc-
tions, i.e., for almost every model at least one of the single-row reductions
is triggered. The number of unsolvable models increases by 13 when the
reductions are disabled, and the performance degradation in the “≥ 10 sec”
bracket is 26%, which is surprisingly low given that the set of single-row
presolve components includes bound and coefficient strengthening. One ex-
planation could be that bound and coefficient strengthening are also covered
by multi-row, full-problem and node presolve algorithms, in particular the
multi-row bound and coefficient strengthening, probing and node bound
strengthening; see Sections 5.4, 7.2 and 8.1.

6

3.1 Model cleanup and removal of redundant constraints

Let ε, ψ ∈ R be two given constants. The former denotes the so-called
feasibility tolerance, while the latter may be interpreted as “infinity”. In
Gurobi, both values can be adjusted by the user. Default values are ε :=
10−6 and ψ := 1030.

Let a row
Ai·x ◦i bi (3.2)

with i ∈ M of problem (2.1) be given. If ◦i = “≤” in (3.2) and bi ≥ ψ or
sup{Ai·x} ≤ bi + ε, we discard this row. On the other hand, if inf{Ai·x} >
bi + ε, the problem is infeasible. If ◦i = “=”, inf{Ai·x} ≥ bi − ε, and
sup{Ai·x} ≤ bi + ε, then the row can be discarded. An equation with
inf{Ai·x} > bi + ε or sup{Ai·x} < bi − ε implies the infeasibility of the
problem.

Redundant constraints can result from other presolve reductions, for
example bound strengthening (Section 3.2). But they also occur very often
as part of the original problem formulation: 2525 out of the 3182 models
in our test set contain constraints that can be classified as redundant using
only the original bounds on the variables.

In addition to detecting infeasibility or removing redundant rows, we
also perform reductions on small coefficients. Let (3.2) with k ∈ supp (Ai·)
be given. If |aik| < 10−3 and |aik| · (uk − `k) · |supp (Ai·)| < 10−2 · ε, we
update bi := bi − aik · `k and then set aik := 0. Moreover, we scan the row
starting from the first non-zero coefficient and set coefficients aik to zero as
long as the total sum of modifications |aik| · (uk − `k) stays below 10−1 · ε.
Finally, we set coefficients with |aik| < 10−10 to zero.

As can be seen in Table 3, model cleanup does not lead to big improve-
ments in the solvability of models: the time limit hits only increase by 9,
while the node count does not change much when the cleanup is disabled.
Nevertheless, it has a performance impact of 10% in the “≥ 10 sec” bracket,
which can be attributed to faster algorithms, in particular faster LP solves,
due to the smaller matrix sizes.

3.2 Bound strengthening

This preprocessing approach tries to strengthen the bounds on variables, us-
ing an iterative process called domain propagation, see, e.g., Savelsbergh [34],
Fügenschuh and Martin [21], or Achterberg [2].

In the following we assume that bounds on integer variables are integral;
otherwise, they can always be rounded to shrink the domain of the variable,

7

Table 3: Impact of disabling model cleanup
default disable model cleanup affected

bracket models tilim tilim faster slower time nodes models time

all 3102 559 568 470 650 1.05 0.97 — —
≥ 0 sec 2568 30 39 470 650 1.06 0.99 2120 1.07
≥ 1 sec 1741 30 39 455 615 1.08 1.00 1601 1.08
≥ 10 sec 1213 30 39 355 479 1.10 1.01 1140 1.11
≥ 100 sec 672 30 39 201 286 1.14 1.10 639 1.15
≥ 1000 sec 243 30 39 81 113 1.21 1.16 239 1.21

see also Section 4.2. Consider an inequality constraint

AiSxS + aikxk ≤ bi (3.3)

where i ∈ M , k ∈ N , S = supp (Ai·) \ {k}, and aik 6= 0. Bound strength-
ening can also be applied to equations by processing them as two separate
inequalities. We calculate a lower bound `iS ∈ R ∪ {−∞} such that

AiSxS ≥ `iS

for all integer feasible solutions x ∈ PMIP. In the single-row case considered
here, we just use `iS = inf{AiSxS}. Compare Section 5.4 for the multi-row
case.

If `iS is finite we can potentially tighten the bounds of xk. Depending
on the sign of aik we distinguish two cases. For aik > 0 we can derive an
upper bound on xk using

xk ≤ (bi −AiSxS)/aik ≤ (bi − `iS)/aik

and hence replace uk by

uk := min{uk, (bi − `iS)/aik}. (3.4)

For the case where aik < 0, we can derive a lower bound on xk using

xk ≥ (bi −AiSxS)/aik ≥ (bi − `iS)/aik

and hence replace `k by

`k := max{`k, (bi − `iS)/aik}. (3.5)

If xk is an integer variable we can replace (3.4) by

uk := min{uk, b(bi − `iS)/aikc}

8

Table 4: Impact of disabling bound strengthening
default disable bound strengthening affected

bracket models tilim tilim faster slower time nodes models time

all 3134 562 578 411 591 1.05 1.02 — —
≥ 0 sec 2586 19 35 411 591 1.06 1.03 1645 1.08
≥ 1 sec 1758 19 35 400 538 1.07 1.02 1256 1.10
≥ 10 sec 1201 19 35 302 400 1.09 1.03 911 1.11
≥ 100 sec 654 19 35 187 218 1.10 1.05 501 1.12
≥ 1000 sec 229 19 35 70 102 1.28 1.22 192 1.34

and (3.5) by
`k := max{`k, d(bi − `iS)/aike}.

Clearly, the above strengthening procedures can be applied iteratively
by appropriately updating the infimum (2.2) of the rows as bounds change.
However, the number of such applications must in some way be limited
in order to guarantee finiteness of the procedure, as the following example
illustrates.

Consider the constraints

x1 − ax2 = 0
ax1 − x2 = 0

with 0 ≤ x1, x2 ≤ 1 and 0 < a < 1. Strengthening the bounds of x1 using
the first constraint yields x1 = ax2 ≤ a. Exploiting this new upper bound
on x1, the second constraint implies x2 = ax1 ≤ a2. If we iterate and process
each constraint t times, we reach x1 ≤ a2t−1 and x2 ≤ a2t. Thus, we will
find an infinite sequence of bound reductions.

To avoid such long chains of tiny reductions, Gurobi only tightens bounds
of continuous variables in domain propagation if the change in the bounds
is at least 103 · ε (ε being the feasibility tolerance, see Section 3.1) and
the absolute value of the new bound is smaller than 108. Moreover, in
each presolving pass we only perform one round of domain propagation on
each constraint, so that the work limits on the overall presolve algorithm
automatically limit the number of domain propagation passes.

Table 4 shows the performance impact of bound strengthening, which
is surprisingly low with its 9% in the “≥ 10 sec” bracket, given that bound
strengthening is arguably the most important technique for constraint pro-
gramming solvers. As already mentioned, one reason for the small impact
measured by this experiment is that bound strengthening is also covered by
other algorithms, in particular multi-row bound strengthening (Section 5.4),
probing (Section 7.2) and node bound strengthening (Section 8.1).

9

3.3 Coefficient strengthening

Coefficient strengthening means to modify coefficients of a constraint such
that the LP relaxation of the problem gets tighter inside the box defined
by the bounds of the variables without affecting the set of integer solutions
that satisfy the constraint. Savelsbergh [34] describes this technique in a
general setting, see also Section 5.4 of this paper.

More formally, we define constraint domination as follows:

Definition 2. Given two constraints ax ≤ b and a′x ≤ b′, where a and a′

denote row vectors, with integer or continuous variables x ∈ Rn that are
bounded by ` ≤ x ≤ u, then constraint ax ≤ b dominates a′x ≤ b′ if

{x ∈ Rn|` ≤ x ≤ u, ax ≤ b} ⊂ {x ∈ Rn|` ≤ x ≤ u, a′x ≤ b′},

i.e., the LP-feasible region of ax ≤ b is strictly contained in the one of
ax′ ≤ b′ within the box defined by the variable bounds.

Consider again inequality (3.3) but assume that xk is an integer variable,
k ∈ I. In contrast to the previous Section 3.2 we now need to calculate an
upper bound uiS ∈ R ∪ {∞} on the activity of AiSxS , i.e.,

AiSxS ≤ uiS

for all integer feasible solutions x ∈ PMIP. Similar to the previous section,
we use uiS = sup{AiSxS} in the single-row case that is considered here.

Since xk is an integer variable we can use uiS to strengthen the coefficient
of xk in inequality (3.3). Namely, if aik > 0, uk <∞, and

aik ≥ d := bi − uiS − aik(uk − 1) > 0

then
AiSxS + (aik − d)xk ≤ bi − duk (3.6)

is a valid constraint that dominates the original one in the sub-space of
xk ∈ {uk − 1, uk}, which is the only one that is relevant for this constraint
under the above assumptions. The modified constraint (3.6) is equivalent
to the old one (3.3) in terms of integer solutions, because for xk = uk they
are identical and for xk ≤ uk − 1 the modified constraint is still redundant:

AiSxS + (aik − d)(uk − 1) ≤ uiS + (aik − d)(uk − 1) = bi − duk.

Constraint (3.3) is dominated by (3.6) for xk = uk−1 because for this value
the constraints read AiSxS ≤ uiS + d and AiSxS ≤ uiS , respectively.

10

Table 5: Impact of disabling coefficient strengthening
default disable coefficient strengthening affected

bracket models tilim tilim faster slower time nodes models time

all 3159 566 563 388 431 1.02 1.02 — —
≥ 0 sec 2614 26 23 388 431 1.03 1.02 1550 1.05
≥ 1 sec 1760 26 23 377 416 1.04 1.03 1282 1.05
≥ 10 sec 1225 26 23 287 347 1.06 1.04 961 1.08
≥ 100 sec 672 26 23 175 209 1.09 1.07 559 1.11
≥ 1000 sec 218 26 23 69 75 1.14 1.13 200 1.15

Analogously, for aik < 0, `k > −∞, and

−aik ≥ d′ := bi − uiS − aik(`k + 1) > 0

we can replace the constraint by

AiSxS + (aik + d′)xk ≤ bi + d′`k

to obtain an equivalent model with a tighter LP relaxation.
Similar to bound strengthening, the computational impact of coefficient

strengthening is relatively small, as can be seen in Table 5. It does not help
to solve more models within the time limit, and it improves performance by
only 6% in the “≥ 10 sec” bracket. As noted before, this is most likely due
to the fact that the reduction is also covered by the multi-row coefficient
strengthening (Section 5.4) and partly by probing (Section 7.2).

3.4 Chvátal-Gomory strengthening of inequalities

We can apply the Chvátal-Gomory procedure [15] to inequalities that con-
tain only integer variables. If the resulting inequality strictly dominates
the original one (see Definition 2), we use the Chvátal-Gomory inequality
instead.

More precisely, let Ai·x ≥ bi, i ∈ M , be a constraint of problem (2.1)
with supp (Ai·) ⊆ I and aij ≥ 0 for all j ∈ N . For negative coefficients
we can complement the corresponding variable, provided that it has a finite
upper bound. Moreover, assume that `j = 0 for all j ∈ supp (Ai·). Variables
xj with a finite lower bound `j 6= 0 can be shifted by x′j := xj − `j to get
`′j = 0.

If we can find a scalar s ∈ R with s > 0 such that

daij · se · bi/dbi · se ≤ aij

11

Table 6: Impact of disabling Chvátal-Gomory strengthening
default disable Chvatal-Gomory strengthening affected

bracket models tilim tilim faster slower time nodes models time

all 3176 570 565 368 334 1.00 1.02 — —
≥ 0 sec 2624 23 18 368 334 1.00 1.03 1357 1.00
≥ 1 sec 1763 23 18 354 325 1.00 1.05 1155 1.00
≥ 10 sec 1216 23 18 287 261 1.00 1.04 852 1.01
≥ 100 sec 660 23 18 184 159 1.00 1.01 493 1.01
≥ 1000 sec 200 23 18 65 60 1.01 1.02 168 1.02

for all j ∈ N , and there exists k ∈ N with

daik · se · bi/dbi · se < aik,

then we replace Ai·x ≥ bi by dAi· · sex ≥ dbi · se.
Now the question is how to find the scalar s. For this, Gurobi uses a

very simple heuristic. Namely, we just try values

s ∈ {1, t/amax, t/amin, (2t− 1)/(2amin) : t = 1, . . . , 5}

with amax = max{|aij | : j ∈ N} and amin = min{|aij | : j ∈ supp (Ai·)}.
The performance impact of Chvátal-Gomory strengthening is disappoint-

ing; see Table 6. Even though it affects many models, it does not help at all
to solve more of them or to solve them faster. Nevertheless, the reduction
is turned on in default Gurobi settings.

3.5 Euclidean and modular inverse reduction

Given a constraint
n∑
j=1

aijxj ◦i bi

with xj ∈ Z for all j = 1, . . . , n, i ∈ M and ◦i ∈ {“=”, “≤”}, the Euclidean
reduction approach divides the constraint by the greatest common divisor
d = gcd(ai1, . . . , ain) of the coefficients, where we use the following extended
definition that allows application to rational numbers, not just integers.

Definition 3. Given a1, . . . , an ∈ Q, the greatest common divisor d =
gcd(a1, . . . , an) is the largest value d ∈ Q such that aj/d ∈ Z for all j =
1, . . . , n.

12

If all coefficients in the given constraint are integral we use the Euclidean
algorithm to calculate d ∈ Z. One could also apply the Euclidean algorithm
for fractional coefficients, but we have found that this can lead to numerical
issues due to the limited precision of floating point arithmetic. Moreover,
benchmarks results have shown that it degrades the performance. For this
reason, Gurobi uses two simple heuristics to try to find the gcd for fractional
coefficients:

1. Divide all coefficients by amin = min{|aij | : j ∈ supp (Ai·)}. If this
leads to integer values for all coefficients, return

d = amin · gcd(ai1/amin, . . . , ain/amin).

2. Multiply all coefficients by 600. If this leads to integer values for all
coefficients, return

d = gcd(600 · ai1, . . . , 600 · ain)/600.

Note that we use 600 as a multiplier because it is a multiple of many
small integer values that often arise as denominators in real-world models.

Now, if supp (Ai·) ⊆ I and d = gcd(ai1, . . . , ain) we can replace the
constraint by

n∑
j=1

(aij
d

)
xj ◦i

⌊bi
d

⌋
. (3.7)

In case of ◦i = “=” and bi/d /∈ Z, the problem is infeasible.
For equations we can derive some knowledge about the divisibility of the

variables, say x1 with ai1 6= 0. Note that in this case, we can also deal with
a single continuous variable x1. Then, if supp (Ai·) \ {1} ⊆ I we know that
x1 will always be a multiple of

d′ := gcd(ai2/ai1, . . . , ain/ai1, bi/ai1)

and can substitute x1 := d′ · z with a new, auxiliary integer variable z.

Example 1. Consider the constraint x1−3x2+6x3 = 9 with x2, x3 ∈ Z. We
express x1 as x1 = 9+3x2−6x3 and see that x1 is always an integer multiple
of 3. Thus we can substitute x1 := 3z with z ∈ Z and get z − x2 + 2x3 = 3.

If all variables of the constraint are integers, supp (Ai·) ⊆ I, we divide
the equation by d as in (3.7) so that the resulting constraint

ai1x1 + ai2x2 + . . .+ ainxn = bi (3.8)

13

has bi ∈ Z and aij ∈ Z for all j, and the integers {ai1, . . . , ain} are relatively
prime. Then we consider

d̄ := gcd(ai2, . . . , ain) ∈ Z>0.

If d̄ ≥ 2 we can derive a substitution on x1. First, if bi/d̄ ∈ Z, we can sub-
stitute x1 := d̄ · z as above with auxiliary integer variable z ∈ Z. Otherwise,
we can use the modular multiplicative inverse as follows.

Definition 4. The modular multiplicative inverse of a ∈ Z modulo m ∈ Z>0

is an integer a−1|m ∈ Z>0 such that a · a−1|m ≡ 1 (mod m).

Because {ai1, . . . , ain} are relatively prime we have gcd(ai1, d̄) = 1. Hence,

ai1x1 ≡ bi (mod d̄)

for all x1 ∈ Z that are feasible for (3.8). It follows that

x1 ≡ a
−1|d̄
i1 · bi (mod d̄)

and hence that we can substitute

x1 := d̄ · z + b̄ and b̄ ≡ a−1|d̄
i1 · bi (mod d̄)

with 0 < b̄ < d̄ where z ∈ Z is a new, auxiliary variable.
Note that if |ai1| = |aij | for any j 6= 1, then d̄ = 1 due to the fact that

the constraint coefficients {ai1, . . . , ain} are relatively prime. Hence, we only
need to look at variables that have a unique constraint coefficient in absolute
terms. Gurobi only applies the reduction to the variable with the smallest
(absolute) non-zero coefficient in the constraint, and only if this variable is
unique.

Example 2. Given the problem

min x1 + x2

s.t. 1867x1 + 1913x2 = 3618894
x1, x2 ≥ 0

with x1, x2 ∈ Z being integer variables. Note that 1867 and 1913 are prime
and hence relatively prime. Note also that 3618894/1913 is fractional. The
modular multiplicative inverse of 1867 is 1867−1|1913 = 1206. Further, 1206 ·
3618894 ≡ 1009 (mod 1913). Now we can substitute x1 = 1913z + 1009
with z ∈ Z, z ≥ 0, which yields 3571571z + 1913x2 = 1735091. Dividing by

14

Table 7: Impact of disabling Euclidean and modular inverse reduction
default disable Euclidean reduction affected

bracket models tilim tilim faster slower time nodes models time

all 3167 571 569 417 413 1.01 1.01 — —
≥ 0 sec 2617 26 24 417 413 1.01 1.02 1607 1.02
≥ 1 sec 1760 26 24 405 403 1.02 1.01 1317 1.02
≥ 10 sec 1217 26 24 319 335 1.03 1.04 974 1.04
≥ 100 sec 681 26 24 209 212 1.05 1.10 576 1.06
≥ 1000 sec 213 26 24 79 69 1.06 1.10 196 1.06

the greatest common divisor 1913 results in 1867z+ x2 = 907. The optimal
solution (and obviously the only solution) is z = 0 and x2 = 907. Inserting
z = 0 into x1 = 1913z+1009 we get x1 = 1009. By using the modular inverse
presolve reduction Gurobi solves the problem at the root node. Without this
presolving step it takes almost two thousand branch-and-bound nodes.

The performance benefit of the Euclidean reduction is low, as can be seen
in Table 7. Nevertheless, even though one may think that its applicability
is relatively small, it does affect a good fraction of the models in our test
set. The “faster/slower” statistics indicate that it is helping and hurting on
roughly the same number of models, but overall it yields a 3% performance
improvement.

3.6 Simple probing on a single equation

If the value of a binary variable in a constraint implies the value for some
other variables and vice versa, we can substitute the other variables for the
binary variable.

Gurobi applies this idea only to one special case that can be detected
very efficiently. The more general case is covered by regular probing; see
Section 7.2. More precisely, we examine equality constraints Ai·x = bi with

inf{Ai·x}+ sup{Ai·x} = 2bi (3.9)

and look for variables xk ∈ {0, 1}, k ∈ supp (Ai·), such that

|aik| = sup{Ai·x} − bi. (3.10)

Since complementing variables, that is replacing xj by x′j = uj − xj , does
not affect (3.9) and (3.10) we may assume w.l.o.g. that aij ≥ 0 for all j ∈ N .
Then, the equality constraint together with condition (3.10) implies

xk = 0→ xj = uj for all j ∈ supp (Ai·) \ {k}.

15

Table 8: Impact of disabling simple probing on single equations
default disable simple probing affected

bracket models tilim tilim faster slower time nodes models time

all 3180 571 570 98 102 1.00 1.00 — —
≥ 0 sec 2613 9 8 98 102 1.00 1.00 366 1.00
≥ 1 sec 1746 9 8 97 101 1.00 1.00 333 1.00
≥ 10 sec 1186 9 8 81 87 1.00 1.00 264 1.01
≥ 100 sec 631 9 8 53 49 0.99 0.98 149 0.97
≥ 1000 sec 167 9 8 26 17 1.00 0.97 54 1.00

Moreover, substituting (3.10) into (3.9) yields |aik| = bi− inf{Ai·x}, and we
have

xk = 1→ xj = `j for all j ∈ supp (Ai·) \ {k}.

Combining the two sets of implications, we can substitute

xj := uj − (uj − `j)xk for all j ∈ supp (Ai·) \ {k}.

Example 3. Consider the constraint 10x1 + x2 + . . . + x11 = 10 with
x1 ∈ {0, 1}, xj ∈ R, and 0 ≤ xj ≤ 1 for j = 2, . . . , 11. x1 = 0 implies
x2 = . . . = x11 = 1, and x1 = 1 implies x2 = . . . = x11 = 0. Thus, we can
substitute xj := 1− x1 for j = 2, . . . , 11.

The simple probing on single equations is one of those presolve methods
that should clearly help performance. Conditions (3.9) and (3.10) are very
easy to check, and if they apply, we can substitute all but one variable of
the constraint and discard the constraint. Unfortunately, Table 8 tells a
different story. Even though the algorithm finds reductions on about 20%
of the models, it does not help at all to improve performance, neither in the
number of time limit hits, nor in the “faster/slower” statistics, nor in the
geometric mean over the solve times. One reason for this disappointing result
is certainly that the reduction is also covered by probing, see Section 7.2.
But nevertheless, this cannot be the full explanation, because performing
these substitutions within the innermost presolving loop should be better
than having to wait for probing, which is called rather late in the presolving
process.

3.7 Special ordered set reductions

The concept of ordered sets of variables in the context of MIP was introduced
by Beale and Tomlin [10]. A special ordered set type 1 (SOS1) is a set of
variables with the requirement that at most one of the variables is non-zero.

16

A special ordered set type 2 (SOS2) is an ordered sequence of variables such
that at most two variables are non-zero, and if two variables are non-zero
they must be adjacent in the specified order.

Considering individual SOS constraints, we can derive the following sim-
ple reductions: for a constraint SOS1(x1, . . . , xp), if `k > 0 or uk < 0 for a
variable xk, 1 ≤ k ≤ p, we can fix xj := 0 for all j ∈ {1, . . . , p} \ {k}. If
`k > 0 or uk < 0 in a constraint SOS2(x1, . . . , xp), then we can fix xj := 0
for all j ∈ {1, . . . , p} \ {k − 1, k, k + 1}.

For SOS1 constraints we can remove variables that are fixed to zero. Note
that for SOS2 constraints we can only remove variables fixed to zero that
are at the beginning or the end of the sequence. Otherwise, the adjacency
relation, and thus the semantics of the SOS2 constraint, would be modified.

SOS1 constraints with only one remaining variable and SOS2 constraints
with at most two remaining variables can be discarded. An SOS2 constraint
(x1, x2, x3) that consists of only 3 variables can be translated into an SOS1
constraint (x1, x3).

Finally, consider an SOS1 constraint (x1, x2) of length 2 with objective
coefficients c1 ≥ 0, c2 ≥ 0, lower bounds `1 = `2 = 0, and either both
variables integer, {1, 2} ⊆ I, or both continuous, {1, 2} ⊆ N \ I. If for
all constraints i ∈ M we have −ai1 − ai2 ◦i 0, then for any given feasible
solution x? we can decrease both variables x?1 and x?2 simultaneously until
one of them hits its lower bound of zero. For this reason, we can discard
such an SOS1 constraint, since we will always be able to post-process an
otherwise feasible solution such that the SOS1 constraint gets satisfied and
the objective function value does not increase. Obviously, one can apply
analogous reasoning to the inverse case with c1, c2 ≤ 0, u1 = u2 = 0 and
ai1 + ai2 ◦i 0 for all i ∈ M , but Gurobi does not implement the inverted
reduction because real-world models very rarely contain SOS1 constraints
on variables with negative lower bound.

The performance impact of the special ordered set reductions is hard
to evaluate with our computational experiments. Our test set contains 104
models with SOS constraints, and only 48 of them are affected by our SOS
specific presolve reductions, see Table 9. On this very small set of models, the
reduction is very powerful, providing a performance improvement of 25%.
Nevertheless, the size of the test set is too small to draw any meaningful
conclusions; compare Section 2 in Achterberg and Wunderling [5].

17

Table 9: Impact of disabling special ordered set reductions
default disable SOS reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3181 571 572 17 21 1.00 1.01 — —
≥ 0 sec 2606 1 2 17 21 1.00 1.01 48 1.25
≥ 1 sec 1743 1 2 16 18 1.01 1.02 41 1.28
≥ 10 sec 1172 1 2 16 11 1.01 1.02 35 1.26
≥ 100 sec 614 1 2 9 10 1.02 1.04 22 1.58
≥ 1000 sec 154 1 2 3 4 1.05 1.08 8 2.50

Table 10: Impact of disabling all single-column reductions
default disable single-column reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3149 567 630 414 1074 1.25 1.01 — —
≥ 0 sec 2611 34 97 414 1074 1.32 1.09 2226 1.37
≥ 1 sec 1811 34 97 398 974 1.45 1.11 1705 1.48
≥ 10 sec 1288 34 97 296 740 1.59 1.16 1236 1.61
≥ 100 sec 769 34 97 184 465 1.79 1.26 749 1.82
≥ 1000 sec 326 34 97 74 220 2.36 1.46 322 2.39

4 Reductions for individual variables

In the following we will explain the Gurobi presolve reductions that deal
with individual columns or variables.

The results in Table 10 suggest that this set of reductions is much more
powerful than the single-row reductions: compare Table 2 on page 6. But it
has to be noted that the majority of the performance improvement comes
from the so-called “aggregator”, which substitutes out implied free variables
(see Section 4.5), while the other single-column reductions provide only a
very modest speed-up.

4.1 Removal of fixed variables

Variables xj with bounds `j = uj can be removed from the problem by
subtracting A·j`j from the right hand side b and by accumulating the con-
tributions cj`j to the objective function in a constant c0 ∈ R. This constant
has no direct effect on the optimization process but is added to the objec-
tive function for reporting objective values and for calculating the relative
optimality gap.

Similar to redundant constraints, fixed variables can be the result of
other presolve reductions like bound strengthening (Section 3.2). Such vari-

18

ables also occur frequently as part of the original problem formulation: 860
out of the 3182 models in our test set contain fixed variables. Another im-
portant case arises in sub-MIP solves, in particular in those involving primal
heuristics such as RINS, see Danna et al. [17], where potentially a large frac-
tion of the variables are fixed before then calling the MIP solver recursively
as part of a procedure for finding improved integer feasible solutions.

Unfortunately, we cannot provide meaningful benchmark results to eval-
uate the impact of removing fixed variables from the problem. Many impor-
tant heuristic decisions during presolve and also during the overall solving
process depend on the changes in the size of the model due to presolve.
Thus, keeping fixed variables in the model would greatly influence those
decisions, resulting in a performance degradation as a side-effect that really
should not be attributed to the actual removal of the variables.

4.2 Rounding bounds of integer variables

If xj , j ∈ I, is an integer variable with fractional lower or upper bound,
this bound can be replaced by d`je or bujc, respectively. Note also that
rounding the bounds of integer variables yields tighter values for the row
infima (2.2) and suprema (2.3) and can thus trigger additional reductions
on other variables.

The rounding of bounds of integer variables is a mandatory step in
Gurobi and cannot be disabled. Gurobi’s internal MIP solving algorithms
rely on the fact that integer variables have integral bounds.

4.3 Strengthen semi-continuous and semi-integer bounds

A semi-continuous variable is a variable that can take the value zero or any
value between the specified lower and upper semi-continuous bounds. A
lower semi-continuous bound must be finite and non-negative. An upper
semi-continuous bound must be non-negative but does not need to be finite.

Let a semi-continuous variable xj with xj = 0 ∨ (`j ≤ xj ≤ uj) be
given. If we can prove xj ≥ `′j > 0, then we can convert xj into a regular
continuous variable with max{`j , `′j} ≤ xj ≤ uj . Conversely, if we can prove
xj < `j the variable must be zero and we can fix xj := 0. Finally, if `j = 0
we can discard the “semi” property of the variable and interpret the variable
as a regular continuous variable.

Semi-integer variables are defined analogously to semi-continuous vari-
ables with the additional property that they need to take integer values.

19

Table 11: Impact of semi-continuous and semi-integer bound strengthening
default disable semi-variable bound strengthening affected

bracket models tilim tilim faster slower time nodes models time

all 3180 571 571 5 4 1.00 1.00 — —
≥ 0 sec 2605 1 1 5 4 1.00 1.00 13 1.30
≥ 1 sec 1734 1 1 5 4 1.00 1.00 13 1.30
≥ 10 sec 1171 1 1 5 3 1.00 1.00 11 1.36
≥ 100 sec 615 1 1 3 2 1.01 1.01 7 1.76
≥ 1000 sec 155 1 1 1 1 1.03 1.05 3 4.88

We can apply the same reductions as for semi-continuous variables, but in
addition semi-integer bounds can be rounded as in Section 4.2.

The computational results in Table 11 are not very meaningful: we only
have 55 models with semi-continuous or semi-integer variables in our test set,
and from those only 13 are affected by semi bound strengthening. Moreover,
the speed-up on the affected models mainly originates from a single model,
which solves in 8.3 seconds using default settings and hits the time limit
without strengthening the bounds of the semi-continuous variables.

4.4 Dual fixing, substitution and bound strengthening

If the coefficients A·j and the objective coefficient cj of variable j ∈ N
fulfill certain conditions, we can sometimes derive variable fixings or implied
bounds. In the following we assume that all constraints are either equations,
◦i = “=”, or less-or-equal inequalities, ◦i = “≤”.

For the presolve reductions in this section we consider variables j ∈ N
that do not appear in equations, i.e., aij = 0 for all i ∈ M with ◦i = “=”.
Then, for dual fixing, we distinguish two cases:

(i) cj ≥ 0, aij ≥ 0 for all i ∈M , and

(ii) cj ≤ 0, aij ≤ 0 for all i ∈M .

In case (i) we can fix xj := `j if `j > −∞. If `j = −∞ and cj > 0 the
problem is unbounded or infeasible. For `j = −∞ and cj = 0 we remove
the variable and all constraints with aij 6= 0 from the problem. In a post-
processing step, after an optimal solution for the presolved problem has been
found, we can always select a finite value for xj such that all constraints in
which it appears are satisfied.

Case (ii) is analogous: if uj is finite, we fix xj := uj ; otherwise, the
problem is unbounded or infeasible for cj < 0, and for cj = 0 we can remove
the variable and its constraints from the problem.

20

If we are in case (i) except for one row r ∈M with arj < 0 we might be
able to substitute xj for some binary variable xk. Namely, if xk = 0 implies
the redundancy of constraint r, i.e., sup{ArS} ≤ br for S = N \ {k}, and
xk = 1 implies xj = uj (due to constraint r or other constraints), then we
can substitute xj := `j + (uj − `j) · xk. A similar approach can be applied
to case (ii), which leads to a substitution xj := uj + (`j − uj) · xk.

Example 4. Consider the mixed integer program

min x1 + x2 + x3

2x1 + 4x2 − 3x3 ≤ 8 (1)

− x2 − x3 ≤ −4 (2)

−x1 − x2 + 8x3 ≤ 0 (3)

0 ≤ x1 , x2 ≤ 4

x3 ∈ {0, 1}

Variable x1 only appears in constraint r = 3 with a negative coefficient. If
x3 = 0, then constraint (3) is redundant, and there is no need to set x1 to
any value larger than 0. On the other hand, x3 = 1 forces x1 = x2 = 4.
Hence, we can substitute x1 := 4x3.

In the general case where we are unable to fix or substitute a variable,
we may still be able to derive tighter bounds using dual arguments. Given
a variable xj with cj ≥ 0, let

S = N \ {j},
M+ = {i ∈M : aij > 0},
M− = {i ∈M : aij < 0},

and still assume ◦i = “≤” for all i ∈M+∪M−. Now, consider an assignment
xj = ũj < uj with ũj ∈ Z if j ∈ I. If all constraints in M− get redundant,
i.e.,

aij ũj + sup{AiSxS} ≤ bi for all i ∈M−,

then ũj is a valid upper bound for xj , and we can replace uj := ũj . Note
that it is easy to calculate the smallest valid ũj or to show that no such ũj
exists.

Analogously, if cj ≤ 0 we may be able to update the lower bound of the
variable. If ˜̀

j > `j , ˜̀
j ∈ Z if j ∈ I, and aij ˜̀j + sup{AiSxS} ≤ bi for all

i ∈M+, we can replace `j := ˜̀
j .

21

Table 12: Impact of dual fixing, substitution and bound strengthening
default disable dual fixing affected

bracket models tilim tilim faster slower time nodes models time

all 3162 570 576 339 417 1.02 0.97 — —
≥ 0 sec 2610 23 29 339 417 1.02 0.97 1386 1.04
≥ 1 sec 1764 23 29 328 393 1.03 0.98 1068 1.04
≥ 10 sec 1212 23 29 260 311 1.04 0.99 794 1.06
≥ 100 sec 650 23 29 155 194 1.07 1.01 461 1.11
≥ 1000 sec 213 23 29 58 77 1.25 1.31 169 1.32

Example 5. Consider the linear program

min x1 + x2 + x3

2x1 + 4x2 − 3x3 ≤ 8 (1)

− x2 − x3 ≤ −4 (2)

−2x1 − 2x2 + x3 ≤ 6 (3)

0 ≤ x1 , x2 , x3 ≤ 10

For variable x1 we have M+ = {1} and M− = {3}. For constraint (3) we see
that x1 = 2 suffices to render it redundant because −2·2+sup{−2x2+x3} =
−4 + 10 ≤ 6. Thus, x1 ≤ 2 is a valid upper bound.

Table 12 shows the computational impact of the dual reductions of this
section. About half of the models are affected, and we obtain a 4% speed-up
on average in the “≥ 10 sec” bracket. This performance improvement seems
to originate from the subset of harder models: while the reduction even leads
to a small increase in the number of nodes if we consider all models in our
test set, we observe a 25% speed-up and a 31% reduction in node count on
the 213 models in the “≥ 1000 sec” category.

4.5 Substitute implied free variables

Let `j and uj denote the explicit bounds of variable xj , and ¯̀
j and ūj be

the tightest implied bounds of problem (2.1) that can be discovered using
bound strengthening of Section 3.2 without exploiting the explicit bounds
of xj . If [¯̀

j , ūj] ⊆ [`j , uj], we call xj an implied free variable, which includes
the case of free variables with `j = −∞ and uj =∞.

22

Example 6. Consider the following constraints:

x1 − x2 ≤ 0 (1)

x1 − x3 ≥ 0 (2)

0 ≤ x1 ≤ 1 (3)

0 ≤ x2 ≤ 1 (4)

0 ≤ x3 ≤ 1 (5)

(1) and (4) imply x1 ≤ 1. (2) and (5) imply x1 ≥ 0. Hence x1 is an
implied free variable: we could remove the bounds (3) of the variable without
modifying the feasible space.

Suppose we have a constraint of the form

AiSxS + aijxj = bi

with S ⊆ N \ {j}. If xj is an implied free continuous variable it can be
substituted out of the problem by

xj :=
(
bi −AiSxS

)
/aij .

If the variable is integer we can only perform the substitution if S ⊆ I and
aik/aij ∈ Z for all k ∈ S. If bi/aij /∈ Z in this case, then the problem is
infeasible.

An implied free variable substitution can increase the number of non-
zeros in the coefficient matrix A. Moreover, if the pivot element |aij | is very
small, applying the substitution may lead to numerical problems because
of the potential round-off errors in the update operations for the matrix.
For this reason, we only substitute xj if the estimated fill-in is below some
threshold and for the pivot element aij we have

|aij | ≥ 0.01 ·max{|arj | : r ∈M} or |aij | ≥ 0.01 ·max{|aik| : k ∈ N}.

This numerical safeguard is similar to a Markowitz type criterion for factor-
izing a matrix, see Markowitz [29] and Tomlin [37]. The Markowitz tolerance
of 0.01 is increased to 0.5 or 0.9 for larger values of the “numerical focus” pa-
rameter. But even though these thresholds are pretty conservative, implied
free variable aggregation is one of the main sources for numerical issues in
the presolving step, and the user should consider to disable the aggregator
for numerically challenging models.

As already mentioned above, the implied free variable substitution is
the most important presolve algorithm within Gurobi’s set of single-column

23

Table 13: Impact of implied free variable substitution
default disable variable substitution affected

bracket models tilim tilim faster slower time nodes models time

all 3148 567 618 340 841 1.18 1.01 — —
≥ 0 sec 2606 30 81 340 841 1.23 1.07 1800 1.34
≥ 1 sec 1790 30 81 328 795 1.32 1.09 1366 1.44
≥ 10 sec 1250 30 81 247 607 1.42 1.11 1003 1.54
≥ 100 sec 732 30 81 147 389 1.58 1.18 608 1.73
≥ 1000 sec 300 30 81 60 191 1.98 1.30 272 2.13

Table 14: Impact of disabling all multi-row reductions
default disable multi-row reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3158 569 615 514 806 1.13 1.03 — —
≥ 0 sec 2616 32 78 514 806 1.17 1.09 2013 1.23
≥ 1 sec 1788 32 78 488 743 1.24 1.11 1536 1.29
≥ 10 sec 1266 32 78 346 597 1.34 1.12 1116 1.40
≥ 100 sec 738 32 78 200 375 1.49 1.21 667 1.57
≥ 1000 sec 286 32 78 74 158 2.02 1.41 272 2.10

reductions. Table 13 shows a significant performance degradation when the
aggregator is disabled. We get 51 more time limit hits, and the average time
to solve a model in the “≥ 10 sec” bracket increases by 42%.

5 Reductions that consider multiple constraints at
the same time

In this section we provide an overview of the methods in Gurobi that consider
multiple rows at the same time to derive presolve reductions. In contrast to
the single-row reductions, these are usually more complex and require work
limits in order to avoid an excessive computational overhead in practice.

Table 14 shows the total performance impact of the multi-row presolve
algorithms as implemented in Gurobi. Except for the redundancy detec-
tion, each of the reductions discussed in this section yields a considerable
improvement, leading to a total speed-up of 34% in the “≥ 10 sec” bracket.
Interestingly, this is even larger than the corresponding value for the single-
row reductions, compare Table 2 on page 6.

24

5.1 Redundancy detection

A constraint r ∈ M of a MIP is called redundant if the solution set of the
MIP stays identical when the constraint is removed from the problem:

Definition 5. Given a MIP = (M,N, I,A, b, c, ◦, `, u) of form (2.1) with
its set PMIP of feasible solutions. For r ∈ M let MIPr be the mixed integer
program obtained from MIP by deleting constraint r, i.e.,

MIPr = (M \ {r}, N, I, AS·, bS , c, ◦S , `, u)

with S = M \ {r}. Then, constraint r is called redundant if PMIP = PMIPr .

Note that deciding whether a given constraint r is non-redundant is NP-
complete, because deciding feasibility of a MIP is NP-complete: given a
MIP we add an infeasible row 0 ≤ −1. This infeasible row is non-redundant
in the extended MIP if and only if the original MIP is feasible.

Moreover, removing MIP-redundant rows may actually hurt the perfor-
mance of the MIP solver, because this can weaken the LP relaxation. For
example, cutting planes are computationally very useful constraints, see for
example Bixby et al. [11] and Achterberg and Wunderling [5], but they are
redundant for the MIP: they do not alter the set of integer feasible solu-
tions; they only cut off parts of the solution space of the LP relaxation.
Consequently, redundancy detection is mostly concerned with identifying
constraints that are even redundant for the LP relaxation of the MIP.

Identifying whether a constraint is redundant for the LP relaxation can
be done in polynomial time. Namely, for a given inequality Ar·x ≤ br it
amounts to solving the LP

b?r := max{Ar·x : AS·x ◦S bS , ` ≤ x ≤ u}

with S = M \ {r}, i.e., AS·x ◦S bS representing the sub-system obtained by
removing constraint r. The constraint is redundant for the LP relaxation if
and only if b?r ≤ br.

Even though it is polynomial, solving an LP for each constraint in the
problem is usually still too expensive to be useful in practice. Therefore,
Gurobi solves full LPs for redundancy detection only in special situations
when it seems to be effective for the problem instance at hand. Typically, we
employ simplified variants of the LP approach by considering only a subset
of the constraints.

The most important special case is the one where only the bounds of
the variables are considered. This is the well-known “single-row” redun-
dancy detection based on the supremum of the row activity as defined by

25

Table 15: Impact of enabling dependent row detection
default enable dependent row detection affected

bracket models tilim tilim faster slower time nodes models time

all 3175 569 575 195 203 1.02 1.02 — —
≥ 0 sec 2615 13 19 195 203 1.02 1.02 737 1.07
≥ 1 sec 1754 13 19 188 201 1.03 1.04 602 1.09
≥ 10 sec 1196 13 19 151 147 1.04 1.04 430 1.11
≥ 100 sec 644 13 19 95 86 1.05 1.05 232 1.17
≥ 1000 sec 193 13 19 34 47 1.25 1.29 93 1.65

equation (2.3), see Section 3.1: an inequality Ar·x ≤ br is redundant if
sup{Ar·x} ≤ br. The next, but already much more involved, case is to use
one additional constraint to prove redundancy of a given inequality. Here,
the most important version is the case of parallel rows, which will be dis-
cussed in Section 5.2. One may also use structures like cliques or implied
cliques to detect redundant constraints in a combinatorial way.

Another case of multi-row redundancy detection is to find linear depen-
dent equations within the set of equality constraints. This can be done by
using a so-called rank revealing LU factorization as it is done by Miranian
and Gu [30]. If there is a row 0 = 0 in the factorized system, the correspond-
ing row in the original system is linear dependent and can be removed. If
the factorized system contains a row 0 = br with br 6= 0, then the problem
is infeasible.

Except for the mentioned cases of the single-row redundancy, the parallel
row detection, and the full LP solves for very special cases, Gurobi does not
apply any additional redundancy checks in default settings. The reason is
that it does not help to improve the performance, as can be seed in Tables 15
to 17. Table 15 provides statistics for enabling the dependent row detection
using a rank revealing LU factorization. Doing so degrades the performance
by 4% in the “≥ 10 sec” bracket. But note that this is not due to the
overhead associated with the factorization: the node count increases by the
same amount. We do not completely understand why removing redundant
rows can hurt the MIP solving process, but our hypothesis is that those
redundant rows can be useful as base inequalities to separate cutting planes.

Table 16 shows the impact of discarding set packing inequalities (also
known as “clique inequalities”) that are dominated by another constraint.
Note that this is a case of integer domination, which means that removing
the clique inequality can weaken the LP relaxation. If needed, however, the
clique can be added back to the LP by separating it as a clique cut. The
computational results indicate that this reduction neither hurts nor helps.

26

Table 16: Impact of enabling clique subsumption detection
default enable clique subsumption detection affected

bracket models tilim tilim faster slower time nodes models time

all 3178 571 565 144 164 1.00 1.01 — —
≥ 0 sec 2614 12 6 144 164 1.00 1.02 553 1.01
≥ 1 sec 1751 12 6 142 162 1.00 1.02 496 1.01
≥ 10 sec 1191 12 6 113 131 1.01 1.01 364 1.01
≥ 100 sec 629 12 6 78 79 1.00 1.01 217 1.00
≥ 1000 sec 173 12 6 27 35 1.01 1.03 80 1.03

Table 17: Impact of enabling inequality subsumption detection
default enable inequality subsumption detection affected

bracket models tilim tilim faster slower time nodes models time

all 3179 571 572 184 194 1.00 1.01 — —
≥ 0 sec 2616 13 14 184 194 1.00 1.01 637 1.00
≥ 1 sec 1751 13 14 181 192 1.00 1.02 564 1.00
≥ 10 sec 1197 13 14 150 168 1.01 1.02 439 1.02
≥ 100 sec 633 13 14 102 107 1.01 1.03 269 1.01
≥ 1000 sec 187 13 14 35 47 1.07 1.14 102 1.14

It affects about a third of the models in the test set, but its impact on the
solve time is marginal.

The third method, which is evaluated in Table 17, identifies inequalities
ax ≤ b that are subsets of some other constraint ax + dy ◦ b′ with ◦ ∈
{“≤”, “=”}. Now, if inf{dy} ≥ b′−b then ax ≤ b is dominated by ax+dy◦b′
and can be discarded. On the other hand, if ◦ = “≤” and sup{dy} ≤ b′ − b
then ax+ dy ≤ b′ is dominated by ax ≤ b. Unfortunately, even though this
is a case of LP redundancy, discarding subsumed constraints does not speed
up the MIP solving process either. It affects about a third of the non-trivial
models but is only performance neutral.

5.2 Parallel and nearly parallel rows

A special case of redundant constraints are two rows that are identical up
to a positive scalar. Such redundancies are identified as part of the so-called
parallel row detection. Two rows q, r ∈ M are called parallel if Aq· = sAr·
for some s ∈ R, s 6= 0. If q and r are parallel, then the following holds:

1. If both constraints are equations

Aq·x = bq

Ar·x = br

27

then r can be discarded if bq = sbr. The problem is infeasible if
bq 6= sbr.

2. If exactly one constraint is an equation

Aq·x = bq

Ar·x ≤ br
then r can be discarded if bq ≤ sbr and s > 0, or if bq ≥ sbr and s < 0.
The problem is infeasible if bq > sbr and s > 0, or if bq < sbr and
s < 0.

3. If both constraints are inequalities

Aq·x ≤ bq
Ar·x ≤ br

then r can be discarded if bq ≤ sbr and s > 0. On the other hand, q
can be discarded if bq ≥ sbr and s > 0. For s < 0, the two constraints
can be merged into a ranged row sbr ≤ Aq·x ≤ bq if bq > sbr and into
an equation Aq·x = bq if bq = sbr. The problem is infeasible if bq < sbr
and s < 0.

Similar to what is described by Andersen and Andersen [6], the detection
of parallel rows in Gurobi is done by a two level hashing algorithm. The
first hash function considers the support of the row, i.e., the indices of the
columns with non-zero coefficients. The second hash function considers the
coefficients, normalized to have a maximum norm of 1 and to have a positive
coefficient for the variable with smallest index. Still it can happen that many
rows end up in the same hash bin, so that a pairwise comparison between
the rows in the same bin is too expensive. In this case, we sort the rows of
the bin lexicographically and compare only direct neighbors in this sorted
bin.

A small generalization of parallel row detection can be done by consider-
ing singleton variables in a special way. A singleton variable xj is a variable
which has only one non-zero coefficient in the matrix, i.e., |supp (A·j)| = 1.
Let x1 and x2 be two different singleton variables, C = {3, . . . , n}, and
q, r ∈ M be two different row indices such that AqC = sArC with s ∈ R.
Then the following holds:

1. If both constraints are equations

aq1x1 +AqCxC = bq

ar2x2 +ArCxC = br

28

with ar2 6= 0, then we can substitute x2 := tx1 + d with t = aq1/(sar2)
and d = (br − bq/s)/ar2, provided that we tighten the bounds of x1 to

`1 := max{`1, (`2 − d)/t} and u1 := min{u1, (u2 − d)/t} for t > 0,

`1 := max{`1, (u2 − d)/t} and u1 := min{u1, (`2 − d)/t} for t < 0.

Furthermore, after substitution the two rows are parallel, and con-
straint r can be discarded.

2. If exactly one constraint is an equation and only this equation contains
an additional singleton variable:

aq1x1 +AqCxC = bq

ArCxC ≤ br

with aq1 6= 0, we can tighten the bounds of x1 by

`1 := max{`1, (bq − sbr)/aq1} for saq1 > 0,

u1 := min{u1, (bq − sbr)/aq1} for saq1 < 0.

Furthermore, after the bound strengthening of x1 the inequality r
becomes redundant and can be discarded.

3. Suppose both constraints are inequalities

aq1x1 +AqCxC ≤ bq
ar2x2 +ArCxC ≤ br

with aq1 6= 0, ar2 6= 0, s > 0, bq = sbr, c1c2 ≥ 0, aq1`1 = sar2`2, and
aq1u1 = sar2u2. If x1 and x2 are continuous variables, {1, 2} ⊆ N \ I,
we can aggregate x2 := aq1/(sar2)x1 and discard constraint r. We can
do the same if both variables are integer, {1, 2} ⊆ I, and aq1 = sar2.

In Gurobi, the detection of such “nearly parallel” rows is done together
with the regular parallel row detection, see again [6]. To do so, we tem-
porarily remove singleton variables from the constraint matrix and mark
the constraints that contain these variables. Now, if the parallel row detec-
tion finds a pair of parallel row vectors and any of these rows is marked,
we are in the “nearly parallel” row case. Otherwise, we are in the regular
parallel row case.

The parallel and nearly parallel row detection provides a small perfor-
mance improvement, as can be seen in Table 18. In the “≥ 10 sec” bracket,
it affects more than half of the models, and it reduces the average solve time
on these models by 5%, which leads to an overall 3% speed-up.

29

Table 18: Impact of disabling parallel row detection
default disable parallel row detection affected

bracket models tilim tilim faster slower time nodes models time

all 3170 570 573 306 371 1.01 0.99 — —
≥ 0 sec 2609 14 17 306 371 1.02 1.00 1237 1.03
≥ 1 sec 1762 14 17 298 356 1.02 1.01 1003 1.04
≥ 10 sec 1204 14 17 240 281 1.03 1.01 742 1.05
≥ 100 sec 656 14 17 152 170 1.04 1.03 429 1.06
≥ 1000 sec 194 14 17 60 65 1.07 1.06 153 1.08

5.3 Non-zero cancellation

Adding equations to other constraints yields an equivalent model, poten-
tially with a different non-zero structure. This can be used to decrease the
number of non-zeros in the coefficient matrix A, see for example Chang and
McCormick [14]. More precisely, assume we have two rows

AqSxS +AqTxT +AqUxU = bq

ArSxS +ArTxT +ArV xV ≤ br

with q, r ∈M and

S ∪ T ∪ U ∪ V = supp (Aq·) ∪ supp (Ar·)

being a partition of the joint support supp (Aq·) ∪ supp (Ar·) of the rows.
Further assume that there exists a scalar s ∈ R such that sAqS = ArS and
sAqj 6= Arj for all j ∈ T . Then, subtracting s times row q from row r yields
the modified system:

AqSxS +AqTxT +AqUxU = bq

+ (ArT − sAqT)xT − sAqUxU +ArV xV ≤ br − sbq.

The number of non-zero coefficients in the matrix is reduced by |S| − |U |,
so the transformation should be applied if |S| > |U |.

For mixed integer programming, reducing the number of non-zeros in
the coefficient matrix A can be particularly useful because the run-time of
many sub-routines in a MIP solve depends on this number. Furthermore,
non-zero cancellation may generate singleton columns or rows, which opens
up additional presolving opportunities.

For this reason, a number of methods applied in Gurobi presolve try to
add equations to other rows in order to reduce the total number of non-zeros

30

Table 19: Impact of disabling non-zero cancellation
default disable non-zero cancellation affected

bracket models tilim tilim faster slower time nodes models time

all 3171 570 568 275 351 1.02 1.00 — —
≥ 0 sec 2619 23 21 275 351 1.03 1.01 1138 1.07
≥ 1 sec 1768 23 21 267 337 1.04 1.01 936 1.08
≥ 10 sec 1214 23 21 216 278 1.05 1.00 693 1.09
≥ 100 sec 661 23 21 129 163 1.07 1.02 387 1.13
≥ 1000 sec 212 23 21 51 73 1.22 1.17 151 1.32

in the matrix, each method having a different trade-off regarding the com-
plexity of the algorithm and its effectiveness and applicability. A relatively
general but expensive method picks equations from the system and checks
for each other row with a large common support S ∪ T whether there is
an opportunity for canceling non-zeros using the equation at hand. Other
methods look for special structures (e.g., cliques) in the matrix and focus
on eliminating the non-zeros associated with those structures. This is often
much faster than the more general algorithm and can be effective for certain
problem classes. But even though the structure based algorithms are em-
pirically faster than the more general versions, their worst-case complexity
is still quadratic in the maximal number of non-zeros per column or row.
Thus, we use a work limit to terminate the algorithm prematurely if it turns
out to be too expensive for a given problem instance.

In any case, adding equations to other constraints needs to be done with
care. Namely, if the scalar factor s used in this aggregation is too large,
this operation can easily lead to numerical issues in the subsequent equation
system solves and thus in the overall MIP solving process. For this reason,
Gurobi does not use aggregation weights s with |s| > 1000 to cancel non-
zeros.

The computational impact of the non-zero cancellation in Gurobi is sur-
prisingly large, see Table 19. More than half of the models in the “≥ 10 sec”
bracket are affected, and the 9% performance improvement on these models
translates into a 5% overall speed-up. The fact that the node count does
not change much indicates that the performance advantage originates from
the sparsity and the associated speed-ups in other parts of the algorithm, in
particular the linear system solves of the simplex solver.

31

5.4 Bound and coefficient strengthening

Savelsbergh [34] presented the fundamental ideas of bound and coefficient
strengthening for MIP that are still the backbone of the presolving pro-
cess in modern MIP solvers like Gurobi. Moreover, he already described
these reductions in the context of multi-row presolving. Nevertheless, due
to computational complexity, implementations of these methods are often
only considering the single-row case.

In its most general form, bound and coefficient strengthening can be
described as follows. As in Sections 3.2 and 3.3 we consider inequality (3.3):

AiSxS + aikxk ≤ bi

with aik 6= 0 and calculate bounds `iS , uiS ∈ R ∪ {−∞,∞} such that

`iS ≤ AiSxS ≤ uiS

for all integer feasible solutions x ∈ PMIP. Using `iS we can potentially
tighten one of the bounds of xk, see Section 3.2. If xk is an integer variable
we can use uiS to strengthen the coefficient of xk in inequality (3.3), see
Section 3.3.

Now, the important question is how to calculate the bounds

`iS ≤ AiSxS ≤ uiS

with reasonable computational effort, so that they are valid for all x ∈ PMIP

and as tight as possible. The tighter the bounds on the activity of AiSxS , the
better the bound and coefficient strengthening for xk. Recall that for single-
row preprocessing we just use `iS = inf{AiSxS} and uiS = sup{AiSxS}. This
is very cheap to calculate, but it may not be very tight.

The other extreme would be to actually calculate

`iS = min{AiSxS : x ∈ PMIP} and

uiS = max{AiSxS : x ∈ PMIP},

but this would usually be very expensive as it amounts to two MIP solves
per inequality that is considered, each with the original MIP’s constraint
system. A light-weight alternative to MIP solves is to only use the LP
bound to calculate `iS and uiS :

`iS = min{AiSxS : x ∈ PLP} and

uiS = max{AiSxS : x ∈ PLP}.

32

Still, even using just the LP bounds is usually too expensive to be practical.
A more reasonable compromise between computational complexity and

tightness of the bounds is to use a small number of constraints of the system
over which we maximize and minimize the linear form at hand. Again, this
can be done using a MIP or an LP solve. If we just use a single constraint,
then the LP solve is particularly interesting since such LPs can be solved in
O(n) with n being the number of variables in the problem, see Dantzig [18]
and Balas and Zemel [9].

For structured problems it is often possible to calculate tight bounds
for parts of the constraint. We partition the support of the constraint into
blocks

AiS1xS1 + . . .+AiSd
xSd

+ aikxk ≤ bi
with S1∪ . . .∪Sd = N \{k} and Sp1∩Sp2 = ∅ for p1 6= p2. Then we calculate
individual bounds

`iSp ≤ AiSpxSp ≤ uiSp

for the blocks p = 1, . . . , d and use

`iS := `iS1 + . . .+ `iSd
and

uiS := uiS1 + . . .+ uiSd

to get bounds on AiS for the bound and coefficient strengthening on variable
xk. As before, for calculating the individual bounds there is the trade-off
between complexity and tightness. Often, we use the single-row approach

`iSp = inf{AiSpxSp} and uiSp = sup{AiSpxSp}

for most of the blocks and more complex algorithms for one or few of the
blocks for which the problem structure is particularly interesting.

A related well-known procedure is the so-called optimization based bound
tightening (OBBT), which has been first applied in the context of global
optimization by Shectman and Sahinidis [35]. Here, the “block” that we
want to minimize and maximize consists of just a single variable:

min{xk : x ∈ PMIP} ≤ xk ≤ max{xk : x ∈ PMIP}.

The result directly yields stronger bounds for xk. Again, instead of solv-
ing the full MIP one can solve any relaxation of the problem, for example
the LP relaxation or a problem that consists of only a subset of the con-
straints. Since strong bounds for variables are highly important in non-linear

33

Table 20: Impact of disabling multi-row bound and coefficient strengthening
default disable multi-row bound/coeff. str. affected

bracket models tilim tilim faster slower time nodes models time

all 3159 570 577 477 500 1.02 1.01 — —
≥ 0 sec 2611 27 34 477 500 1.02 1.02 1709 1.05
≥ 1 sec 1764 27 34 457 469 1.03 1.03 1326 1.06
≥ 10 sec 1218 27 34 340 372 1.06 1.04 953 1.08
≥ 100 sec 671 27 34 201 227 1.07 1.06 539 1.11
≥ 1000 sec 232 27 34 69 96 1.22 1.24 200 1.26

programming to get tighter relaxations, OBBT is usually applied very ag-
gressively in MINLP and global optimization solvers. In mixed integer pro-
gramming one needs to be more conservative to avoid presolving being too
expensive. Thus, Gurobi employs OBBT only for selected variables and only
when the additional effort seems to be worthwhile.

Table 20 illustrates the performance impact of the multi-row bound and
coefficient strengthening as implemented in Gurobi. It yields a 6% speed-up
in the “≥ 10 sec” bracket, which is quite significant, given that this comes
on top of the improvements provided by the single-row methods, compare
Sections 3.2 and 3.3.

5.5 Clique merging

Cliques are particularly interesting and important sub-structures in mixed
integer programs. They often appear in MIPs to model “one out of n”
decisions. The name “clique” refers to a stable set relaxation of the MIP,
which is defined on the so-called conflict graph, see Atamtürk, Nemhauser
and Savelsbergh [7]. This graph has a node for each binary variable and
its complement and an edge between two nodes if the two corresponding
(possibly complemented) binary variables cannot both take the value of 1 at
the same time. Any feasible MIP solution must correspond to a stable set
in this conflict graph. Thus, any valid inequality for the stable set polytope
on the conflict graph is also valid for the MIP.

Many edges of the conflict graph can be directly read from the MIP
formulation. In particular, every set packing (set partitioning) constraint∑

j∈S
xj +

∑
j∈T

(1− xj) ≤ 1 (= 1)

with S, T ⊆ I, S ∩ T = ∅, `j = 0 and uj = 1 for all j ∈ S ∪ T , gives rise
to |S ∪ T | · (|S ∪ T | − 1)/2 edges. Obviously, the corresponding nodes (i.e.,

34

variables) form a clique in the conflict graph. Now, clique merging is the
task of combining several set packing constraints into a single inequality.

Example 7. Given the three set packing constraints

x1+ x2 ≤ 1

x1 + x3 ≤ 1

x2 + x3 ≤ 1

with binary variables x1, x2 and x3, we can merge them into

x1 + x2 + x3 ≤ 1.

The clique merging process consists of two steps. First, we extend a
given set packing constraint by additional variables using the conflict graph.
This means to search for a larger clique in the graph that subsumes the
clique formed by the set packing constraint, a procedure that is also used to
find clique cuts, see Johnson and Padberg [25] and Savelsbergh [34]. Subse-
quently, we discard constraints that are now dominated by the extended set
packing constraint (see Definition 2 on page 10). In the example above, we
could extend x1 +x2 ≤ 1 to x1 +x2 +x3 ≤ 1, exploiting the fact that neither
(x1, x3) = (1, 1) nor (x2, x3) = (1, 1) can lead to a feasible MIP solution.
Then we would recognize that the two other constraints x1 + x3 ≤ 1 and
x2 + x3 ≤ 1 are dominated by the extended constraint.

Both the clique extension and the domination checks can be time con-
suming in practice, in particular for set packing models with a large number
of variables. For this reason, Gurobi uses a work limit for the clique merging
algorithm and aborts if it becomes too expensive.

An interesting special case of clique merging arises for set packing con-
straints with a small number of elements. In this case, we can use an alter-
native data structure for the merging algorithm that is more efficient.

As we have seen above, a set packing constraint of length l = |S ∪ T |
gives rise to l(l−1)/2 edges in the conflict graph. Storing those edges explic-
itly for long constraints would lead to a very large memory footprint of the
algorithm. Hence, the standard clique merging algorithm in Gurobi works
directly on the constraint matrix, i.e., on a conflict hyper-graph that is given
by an incidence matrix with one hyper-edge for each set partitioning con-
straint in the model. The main operation in the clique merging algorithm is
to find all neighbors of a given vertex v. Using the sparse constraint matrix,
this means to go through the column of the variable xj associated with ver-
tex v, and for each non-zero entry in this column to scan the corresponding

35

Table 21: Impact of disabling clique merging
default disable clique merging affected

bracket models tilim tilim faster slower time nodes models time

all 3174 569 587 300 347 1.05 1.02 — —
≥ 0 sec 2617 17 35 300 347 1.07 1.05 1042 1.18
≥ 1 sec 1761 17 35 291 329 1.10 1.06 881 1.21
≥ 10 sec 1228 17 35 231 283 1.14 1.08 678 1.28
≥ 100 sec 670 17 35 131 181 1.21 1.12 403 1.39
≥ 1000 sec 211 17 35 47 74 1.58 1.42 153 1.87

row. On average, this operation touches l̄c + l̄c · l̄r non-zero matrix entries,
with l̄c and l̄r being the average number of non-zeros in the columns and
rows, respectively.

In the extreme case of a model that consists only of set partitioning
constraints of length 2, as in Example 7, we get 3l̄c memory accesses on
average for a neighbor scan. In particular, in each constraint we rediscover
xj , which is unnecessary. This can be rectified by extracting all short set
packing constraints (Gurobi uses a limit of length 100) into a graph that
stores the edges explicitly as adjacency lists. In our algorithm, we only
need to store one direction of each edge, i.e., for indices u < v we only
store u → v but not v → u. Thus, in the worst case for a model with
all set packing constraints having length 100, we store 4950 edges for each
constraint instead of working on two matrices (the clique matrix and its
transpose) with each having 100 non-zeros per constraint. Consequently,
our memory overhead is at most a factor of 24.75 compared to the incidence
matrix based algorithm. The advantage is to have fewer non-zero accesses in
the neighbor finding operation. For the case of set partitioning constraints
of length 2, we only touch one non-zero for each neighbor, i.e., we get from
3l̄c down to l̄c memory accesses. Typically, this directly translates into a
run-time improvement of almost a factor of 3 for those extreme cases.

Table 21 shows the computational impact of the clique merging algo-
rithms. If clique merging is disabled, we lose 28% performance on the 678
models that are affected in the “≥ 10 sec” bracket. Overall, a 14% reduction
in time and an 8% reduction in nodes can be observed.

36

Table 22: Impact of disabling all multi-column reductions
default disable multi-column reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3173 570 572 337 459 1.04 1.02 — —
≥ 0 sec 2616 18 20 337 459 1.05 1.04 1454 1.09
≥ 1 sec 1770 18 20 326 441 1.07 1.05 1135 1.12
≥ 10 sec 1219 18 20 252 340 1.09 1.06 819 1.14
≥ 100 sec 666 18 20 144 211 1.12 1.08 462 1.17
≥ 1000 sec 210 18 20 54 79 1.21 1.14 166 1.25

6 Reductions that consider multiple variables at
the same time

A few of the presolve reductions implemented in Gurobi deal with multiple
columns of the problem at the same time. For a given subset S ⊆ N these
methods look at the matrix columns A·j , the corresponding objective coeffi-
cients cj , bounds `j and uj , and the integrality status of the variables j ∈ S,
as well as the senses ◦i and infimum inf{Ai·x} and supremum sup{Ai·x}
values of the rows i ∈ M in which the variables appear with a non-zero
coefficient.

As can be seen in Table 22, the multi-column reductions of Gurobi are
not as successful as the multi-row presolve algorithms. They only provide a
modest speed-up of 9% in the “≥ 10 sec” bracket, with the largest contri-
bution coming from the parallel column detection of Section 6.3.

6.1 Extension of dual fixing for single equations

If problem (2.1) has a specific structure, we can apply an extension of dual
fixing from Section 4.4. Assume that a variable xj appears only in one
equation and could otherwise be fixed to a bound by dual reductions. If we
have continuous variables in this equation that can always compensate for
the fixing of the variable xj , we can set xj to its bound.

More formally, let r ∈M be a row index with ◦r = “=”. For convenience,
assume that arj ≥ 0 for all j ∈ N . If this was not the case, we could just
invert the variables with negative coefficient using x′j := −xj to make the
coefficient in row r positive.

Let S+ ⊆ supp (Ar·) be the set of variables s ∈ S+ in the equation with

37

cs ≥ 0 and

ais ≥ 0 for all i ∈M with ◦i = “≤”,

ais = 0 for all i ∈M \ {r} with ◦i = “=”,

and let S− ⊆ supp (Ar·) \ S+ be the set of variables s ∈ S− in the equation
with cs ≤ 0 and

ais ≤ 0 for all i ∈M with ◦i = “≤”,

ais = 0 for all i ∈M \ {r} with ◦i = “=”.

We assume that no constraints with ◦i = “≥” exist. By this definition,
S+ and S− are the indices of the variables for which equation r is the only
constraint in the problem that prevents us from pushing them to their lower
or upper bounds, respectively, using the reduction of Section 4.4.

Let SC− := S− \ I be the set of continuous variables in S− and T− :=
N \ SC− the set of remaining variables in the problem. Now, if

inf{ArT−xT−}+ sup{ArSC
−
xSC
−
} ≥ br

then we can fix xj := `j for all j ∈ S+, because fixing xj to its lower bound
is not hurting the objective or the feasibility of any of the constraints in
M \ {r} by definition of S+, and a potential shortfall in the activity of r,
i.e., Ar·x < br, due to xj = `j can always be compensated by increasing
variables in SC− . Increasing those variables does not impair optimality or
feasibility either, due to the definition of S−.

Analogously, for SC+ := S+ \ I and T+ := N \ SC+ , if

sup{ArT+xT+}+ inf{ArSC
+
xSC

+
} ≤ br

then we can fix xj := uj for all j ∈ S−.
As expected, there are just a handful of models that are affected by

this presolve reduction, see Table 23. It is disabled in default settings of
Gurobi 6.5, but enabling the multi-column dual fixing for equations seems
to help on the 40 models where it can be applied. Nevertheless, such a
small set of problem instances does not provide any meaningful results, and
indeed, additional tests that we have conducted showed that the speed-up
in Table 23 is just an artifact of performance variability.

38

Table 23: Impact of enabling multi-column dual fixing for single equations
default enable dual fixing extension affected

bracket models tilim tilim faster slower time nodes models time

all 3179 571 569 20 6 1.00 1.00 — —
≥ 0 sec 2605 2 0 20 6 1.00 1.00 40 0.88
≥ 1 sec 1735 2 0 20 6 1.00 1.00 37 0.87
≥ 10 sec 1171 2 0 19 5 1.00 1.00 35 0.86
≥ 100 sec 614 2 0 13 3 0.99 1.00 24 0.81
≥ 1000 sec 155 2 0 3 1 1.00 1.01 5 0.98

6.2 Fix redundant penalty variables

Let us assume problem (2.1) is given with ◦i = “≤” for all i ∈ M . In this
context a penalty variable xp, p ∈ N , is a singleton variable with cp > 0,
supp (A·p) = {r}, and arp < 0, see also Gamrath et al. [22].

Consider the problem

min cTPxP + cTV xV

ArPxP + ArV xV ≤ br
ATV xV ≤ bT

with ` ≤ x ≤ u, xj ∈ Z for all j ∈ I, N = P ∪ V , P ∩ V = ∅, cP > 0, and
ArP < 0. First, consider the case that all penalty variables are continuous,
P ∩ I = ∅. W.l.o.g. assume that P = {1, . . . , p} and

c1

|ar1|
≤ . . . ≤ cp

|arp|
.

Now, if for some k ∈ {1, . . . , p} we have

sup{ArV xV }+

k∑
t=1

artut +

p∑
t=k+1

art`t ≤ br,

then we can fix xk+1 := `k+1, . . . , xp := `p because these more expensive
penalty variables are never needed for feasibility of constraint r.

We can apply the same reduction for integer penalty variables if P ⊆ I
and all penalty variables have the same weight in the constraint, Arj = t
for all j ∈ P and some t < 0. This could even be generalized to the case of
integer penalties with non-identical weights using divisibility arguments on
those weights, but such a generalization is not implemented in Gurobi.

Redundant penalty variables can be fixed in about 10% of the models in
our test set, see Table 24. On those models, it yields a 3 to 4% performance

39

Table 24: Impact of disabling redundant penalty variable fixing
default disable redundant penalty fixing affected

bracket models tilim tilim faster slower time nodes models time

all 3180 571 570 52 65 1.00 1.00 — —
≥ 0 sec 2610 6 5 52 65 1.00 1.01 249 1.03
≥ 1 sec 1741 6 5 51 64 1.00 1.01 217 1.03
≥ 10 sec 1179 6 5 44 58 1.01 1.01 173 1.04
≥ 100 sec 625 6 5 28 38 1.00 1.01 99 1.02
≥ 1000 sec 163 6 5 17 15 0.98 0.96 43 0.94

improvement, but one has to take this result with care, as a set of about
200 models is usually not large enough to measure such an impact precisely
enough.

6.3 Parallel columns

Two columns A·j and A·k with j 6= k of problem (2.1) are parallel, if there
exists λ ∈ R \ {0} with A·k = λA·j .

If A·j and A·k are parallel, ck = λcj , and both variables xj , xk fulfill
certain requirements on their variable types, we can merge xj and xk into a
new variable y by

y := xj + λxk (6.1)

with bounds

`y =

{
`j + λ`k, for λ > 0
`j + λuk, for λ < 0

uy =

{
uj + λuk, for λ > 0
uj + λ`k, for λ < 0

and objective coefficient cy = cj . Now we can solve the reduced problem
in order to obtain a solution value for y. In a post-processing (“uncrush”)
step, by using (6.1) and paying attention to the bounds of xj and xk we can
split the value of y into feasible solution values for xj and xk.

Note, however, that we need to take special care of integer variables,
because even if the solution for y is integral we may not always be able to
derive integral values for xj and xk.

W.l.o.g. we now assume j ∈ I. If k /∈ I and |λ(uk−`k)| ≥ 1 we can merge
xj and xk into a new continuous variable y, because in the post-processing
step we will always be able to split the value of y into xj and xk such that
xj is integral.

40

If k ∈ I we can merge xj and xk into an integer variable y if{
xj + λxk : xj ∈ {`j , . . . , uj}, xk ∈ {`k, . . . , uk}

}
= {`y, . . . , uy},

i.e., the image of xj + λxk over the domains of xj and xk is an interval of
integers without any holes. In particular, this is true for |λ| = 1, but it may
also hold for arbitrary λ ∈ Z, depending on the bounds of xj and xk.

Example 8. In the linear program

min 2x1 + 4x2 + x3

s.t. −x1 − 2x2 − x3 ≤ −10

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

0 ≤ x3 ≤ 5

the columns 1 and 2 are parallel with A·2 = λA·1, c2 = λc1, and λ = 2. An
optimal solution is given by x? = (0, 2.5, 5)T . The bounds of

y := x1 + 2x2

are

`y = `1 + λ`2 = 0 and

uy = u1 + λu2 = 11.

The resulting presolved model is

min 2y + x3

s.t. −y − x3 ≤ −10

0 ≤ y ≤ 11

0 ≤ x3 ≤ 5

with solution y? = x?3 = 5. By using the uncrush information y := x1 + 2x2

we set x1 = 0 and x2 = 2.5. In this example, the reduction is also possible
for integer variables because any value y ∈ {0, . . . , 11} can be represented
within the bounds of x1 and x2. The optimal solution y? = x?3 = 5 would
be uncrushed into x? = (1, 2, 5)T .

The detection of parallel columns uses the same code base as the one
for parallel rows, see Section 5.2, which means to apply a two level hashing

41

Table 25: Impact of disabling parallel column detection
default disable parallel column detection affected

bracket models tilim tilim faster slower time nodes models time

all 3172 569 570 216 304 1.02 1.01 — —
≥ 0 sec 2616 18 19 216 304 1.02 1.01 1061 1.06
≥ 1 sec 1759 18 19 209 297 1.04 1.03 849 1.08
≥ 10 sec 1205 18 19 170 239 1.04 1.04 631 1.09
≥ 100 sec 650 18 19 110 145 1.05 1.05 351 1.10
≥ 1000 sec 199 18 19 50 59 1.08 1.02 138 1.12

algorithm and a linear scan over each set of columns with same hash values.
Both the parallel row and parallel column detection are usually very fast in
practice and do not need any work limits to avoid excessive running times.

The performance improvement due to parallel column detection is slightly
larger than the one of parallel rows, compare Table 18 on page 30 with Ta-
ble 25. We observe a 4% speed-up in the “≥ 10 sec” bracket, with about
half of the models affected by the reduction.

6.4 Dominated columns

This preprocessing technique analyzes and exploits dominance relations be-
tween two variables, see also Gamrath et al. [22] and the references therein.
If the bounds and the integrality of both variables satisfy certain conditions,
one can infer variable fixings.

Definition 6. Let a MIP of form (2.1) with ◦i = “≤” for all i ∈ M , and
two variables xj and xk with k 6= j be given. xj dominates xk (xj � xk), if

i) cj ≤ ck,

ii) aij ≤ aik for all constraints i ∈M , and

iii) j ∈ N \ I or k ∈ I.

Condition iii) is necessary to rule out domination from integer to continuous
variables.

We can transform the MIP into an equivalent problem by multiplying
A·j , cj and the swapped bounds of one variable xj by -1. This will allow us
to exploit the cases xj � −xk and −xj � xk as well.

Theorem 1. Consider a MIP of form (2.1) with ◦i = “≤” for all i ∈ M ,
and let xj , xk be two variables with j 6= k. Then, the following holds:

42

i) If uj =∞ and xj � xk then xk can be set to `k.

ii) If uj =∞ and xj � −xk then xk can be set to uk.

iii) If `k = −∞ and xj � xk then xj can be set to uj.

iv) If `k = −∞ and −xj � xk then xj can be set to `j.

Proof. For case i) assume xj � xk and uj = ∞, and let x? be an optimal
solution. If x?k > `k we can set ∆ = x?k − `k, increase x?j by ∆ and decrease
x?k by ∆. While doing this exchange by ∆ we stay feasible because∑
t∈N\{j,k}

aitx
?
t + aij(x

?
j + ∆) + aik(x

?
k −∆) =

∑
t∈N

aitx
?
j︸ ︷︷ ︸

≤bi

+ (aij − aik)∆︸ ︷︷ ︸
≤0

≤ bi

for all constraints i ∈ M . In addition, the objective value is not getting
worse because cTx? + (cj − ck)∆ ≤ cTx?. Thus, if the problem has an
optimal solution, there always exists one with x?k = `k. The other cases are
similar to case i).

Note that the requirement that one of the bounds is infinite is not as
restrictive as it may sound. Namely, it suffices that the bound is implied
by the constraints and the bounds of the other variables, compare also Sec-
tion 4.5. Such an implied bound can be replaced with an infinite value
without changing the solution space, and then we can apply the reductions
of Theorem 1.

We find dominated columns by using a pair-wise comparison algorithm
with some modifications to avoid useless work. We only consider variables
with an infinite or implied bound as dominating columns. For each of those
candidates, we find the shortest row in which it has a positive coefficient
for ≤ inequalities or which is an equation. The other variables in this row
are the candidates to be dominated. To compare two columns (vectors)
for domination, we first check whether their support signatures already rule
out domination; this signature is a 32 bit integer in which bit b is set if
the column contains a row index i with i ≡ b (mod 32). If the signatures
allow for domination, then we explicitly compare the column vectors using
a linear scan.

Even though Table 26 indicates that a good fraction of the models in
our test set contain dominated columns, the performance improvement of
removing those variables is only marginal. We save 3% of run-time on the
affected models in the “≥ 10 sec” bracket, which translates into a 1% overall
speed-up.

43

Table 26: Impact of disabling dominated column detection
default disable dominated column detection affected

bracket models tilim tilim faster slower time nodes models time

all 3175 571 566 244 263 1.01 1.00 — —
≥ 0 sec 2614 15 10 244 263 1.01 1.00 1026 1.02
≥ 1 sec 1764 15 10 240 250 1.01 1.00 838 1.03
≥ 10 sec 1202 15 10 189 188 1.01 1.02 619 1.03
≥ 100 sec 644 15 10 118 119 1.00 1.02 360 1.01
≥ 1000 sec 190 15 10 47 45 1.05 1.11 127 1.08

Table 27: Impact of disabling all full-problem reductions
default disable full-problem reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3155 566 618 571 853 1.18 1.21 — —
≥ 0 sec 2621 37 89 571 853 1.23 1.27 2229 1.28
≥ 1 sec 1813 37 89 534 777 1.33 1.35 1674 1.37
≥ 10 sec 1299 37 89 392 612 1.45 1.45 1223 1.49
≥ 100 sec 773 37 89 227 409 1.72 1.70 734 1.77
≥ 1000 sec 292 37 89 85 177 2.54 2.52 288 2.57

7 Reductions that consider the whole problem

This section covers the presolve reductions of Gurobi that consider the full
problem at the same time. This includes the most expensive algorithms
such as probing or symmetry detection. These methods are called in the
outermost loop of the Gurobi presolving procedure, which typically only
runs for very few or even just one iteration.

As Table 27 shows, the performance impact of the full-problem reduc-
tions is significant. In the “≥ 10 sec” bracket we observe a 45% speed-up,
with probing and implied integer detection being the largest contributors.

7.1 Aggregate pairs of symmetric variables

By exploiting symmetry relations between variables we are sometimes able
to substitute variables.

Definition 7. Let π : N → N be a permutation of the index set N . We call
π a symmetry generator for the MIP (2.1), if

i) cj = cπ(j), `j = `π(j), uj = uπ(j), and j ∈ I ⇔ π(j) ∈ I for all j ∈ N ,
and

44

ii) there exists a row permutation σ : M → M with bi = bσ(i), ◦i = ◦σ(i),
and Aσ(i)π(j) = Aij for all i ∈M and j ∈ N .

If for all j ∈ N with π(j) 6= j we have supp (A·j) ∩ supp (A·π(j)) = ∅, then
π is called a non-overlapping symmetry generator. If for all j ∈ N with
π(j) 6= j we have j ∈ N \ I, then π is called a continuous variable symmetry
generator.

The identification of symmetries in the MIP (2.1) is done by Gurobi using
an algorithm based on the ideas implemented in Saucy, see Darga et al. [19,
20]. This detection algorithm yields symmetry generators Π. Given a non-
overlapping symmetry generator π ∈ Π we can aggregate xj := xπ(j) for
all j ∈ N with j 6= π(j), independent of whether variable xj is integer or
not, see Example 9. Gurobi performs this aggregation iteratively for all
non-overlapping symmetry generators, which means that all variables in an
orbit defined by these generators are aggregated into a single variable.

Additionally, for a continuous variable symmetry generator π we can
aggregate xj := xπ(j) for all j ∈ N with j 6= π(j). Again, this means that all
variables in an orbit defined by these generators are aggregated into a single
variable, which corresponds to the arithmetic average of the variables in the
orbit. Such an aggregation is not possible for integer variables because the
arithmetic average does not preserve integrality.

Example 9. Consider the following problem with all variables binary.

max 4x1 + 4x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7

x1 + 4x3 + x5 + 3x6 + 2x7 ≤ 8
x2 + 4x4 + x5 + 3x6 + 2x7 ≤ 8

This gives rise to the symmetry generator π = (1 ↔ 2; 3 ↔ 4): if we swap
x1 with x2 and x3 with x4 and then swap the two rows we get back to
the original system. Neither x1 and x2, nor x3 and x4 appear in the same
row. Thus, this is a non-overlapping symmetry generator. Hence, we can
aggregate x2 := x1 and x4 := x3. This yields

max 8x1 + 4x3 + 3x5 + 4x6 + 5x7

x1 + 4x3 + x5 + 3x6 + 2x7 ≤ 8
x1 + 4x3 + x5 + 3x6 + 2x7 ≤ 8

and subsequently the parallel row detection of Section 5.2 will discard the
second constraint.

45

Table 28: Impact of disabling symmetric variable aggregation
default disable symmetric variable aggregation affected

bracket models tilim tilim faster slower time nodes models time

all 3180 571 574 36 59 1.01 1.00 — —
≥ 0 sec 2609 5 8 36 59 1.02 1.00 148 1.31
≥ 1 sec 1744 5 8 36 58 1.02 1.00 143 1.33
≥ 10 sec 1180 5 8 32 49 1.03 1.01 130 1.36
≥ 100 sec 627 5 8 24 38 1.06 1.03 88 1.50
≥ 1000 sec 166 5 8 13 20 1.16 1.08 41 1.84

Table 28 provides benchmarking results for the symmetric variable ag-
gregation. With its 3% speed-up in the “≥ 10 sec” bracket the impact on
the overall test set is modest, but for the about 10% of the models where it
applies, the performance improvement is pretty significant. As we will also
see in Section 8.2 on orbital fixing, this behavior is typical for reductions
that exploit symmetry: they apply only on a relatively small subset of the
models, but on those models they are very important.

7.2 Probing

The idea of probing is to set some binary variable tentatively to zero or
one and derive further or stronger inequalities or better bounds, see Savels-
bergh [34] and Achterberg [2].

Let xk be a binary variable, and let xj be an arbitrary variable with
bounds `j ≤ xj ≤ uj . Furthermore, let `0j and u0

j be the lower and upper
bounds of xj that have been deduced from setting xk := 0 using bound
strengthening as in Section 3.2. Correspondingly, let `1j and u1

j be the bounds
of xj calculated from setting xk := 1. Then, the following observations can
be made:

1. If setting xk = 0 leads to an infeasible problem, we can fix xk := 1.
Conversely, if xk = 1 is infeasible, we can fix xk := 0.

2. If `0j = u0
j and `1j = u1

j , xj can be substituted as xj := `0j +(`1j−`0j) ·xk.
Note that for `0j = `1j this means to fix xj := `0j .

3. We can deduce valid global bounds of xj by `j := min{`0j , `1j} and

uj := max{u0
j , u

1
j}.

4. If none of the three cases above can be applied, then we can store valid

46

implications on the bounds of xj depending on the value of xk:

xk = 0→ xj ≥ `0j xk = 1→ xj ≥ `1j
xk = 0→ xj ≤ u0

j xk = 1→ xj ≤ u1
j

(7.1)

Those implications can be used in the main solving process, for exam-
ple for implied bound and MIR cut separation and for the branching
variable decision.

Since tighter bounds and implications found in probing are already ex-
ploited for the domain propagation step of subsequent probing candidates,
probing is sequence dependent. Moreover, probing can be very expensive
and thus needs to be aborted prematurely if it does not seem to be suc-
cessful enough. For this reason, two important aspects of Gurobi’s probing
algorithm are the order in which the probing candidates are processed and
the criterion when probing is aborted.

The probing candidate order is based on the number of other binary
variables that are directly implied by fixing the candidate variable to zero
or one and propagating each constraint in isolation. This number can be
calculated by a simple linear scan over the constraints in which the candidate
participates. The more binary fixings are directly implied by a candidate,
the earlier we are going to process it in the probing algorithm.

In order to avoid consuming too much time we install a probing work
limit that is based on the number of columns and rows in the model. The
work is counted roughly as the number of non-zero matrix entries that we
touch in the domain propagation process. During probing, the work limit is
dynamically adjusted based on the current success level: the base work limit
is multiplied with a factor in [0.01, 100] that is increased with the current
number of derived variable fixings, substitutions, and bound changes.

7.2.1 Clique Coupling Constraints

An interesting problem structure that Gurobi’s probing engine is exploiting
is given by clique coupling constraints. In a preprocessing step of prob-
ing, we first identify cliques (also known as set packing or set partitioning
constraints) in the constraint system. Those are constraints or implied con-
straints of the form ∑

j∈C+

xj −
∑
j∈C−

xj ≤ 1− |C−| or (7.2)

∑
j∈C+

xj −
∑
j∈C−

xj = 1− |C−| (7.3)

47

with binary variables xj , j ∈ C+∪C− ⊆ I, C+∩C− = ∅. Then we partition
the support of each constraint i ∈M into clique blocks

supp (Ai·) = Ri ∪ Ci1 ∪ . . . Ciqi

with cliques Cik = (Ci+k , Ci−k), k = 1, . . . , qi, and a residual index set Ri,
which means that the constraint Ai·x ≤ bi (or “= bi”) is expressed as

AiRixRi +
∑

k=1,...,qi

AiCi
k
xCi

k
≤ bi (or “= bi”).

The clique block terms AiCi
k
xCi

k
are collected in a hash set with duplicates

up to scaling being merged to obtain a list T1, . . . , TQ of unique clique block
terms tqxCq , q = 1, . . . , Q, with binary variables Cq ⊆ I and coefficients
tq ∈ RCq . We generate a mapping f : (i, k) 7→ q for i ∈M and k ∈ 1, . . . , qi
and store the corresponding scaling factors as sik to obtain

AiCi
k
xCi

k
= siktqxCq . (7.4)

Now, for each unique clique block q ∈ {1, . . . , Q} we add a clique coupling
variable yq ∈ R that is linked to the problem variables x via a clique coupling
constraint

tqxCq − yq = 0 (7.5)

and initial bounds

inf{tqxCq} ≤ yq ≤ sup{tqxCq}.

Subsequently, the terms (7.4) with q = f(i, k) are substituted by sikyq in
the constraint system. This yields an equivalent MIP formulation with ad-
ditional variables and constraints that we use within probing. The reason
for this transformation is that the clique coupling constraints (7.5) entail a
stronger and more efficient domain propagation algorithm than regular lin-
ear constraints, because we can exploit the fact that the variables in Cq form
a clique. Note that this resembles a special case of multi-row presolving, see
Section 5.4.

To simplify the presentation we assume that C−q = ∅, i.e., all variables
appear as a positive literal in the clique. Furthermore, we omit the indices
and from now on consider a clique coupling constraint tx − y = 0 with a
set of binary variables x ∈ {0, 1}n and a clique coupling variable y with
bounds `y ≤ y ≤ uy. If the variables x only form an inequality clique (7.2)
we introduce a binary slack variable x0 with t0 = 0 to transform it into an
an equality clique (7.3) so that we only need to consider this latter type.

48

Based on these assumptions, the propagation of clique coupling con-
straints exploits the following facts:

1. If tj < `y or tj > uy we can fix xj := 0.

2. Valid bounds for y are min{tj |uj = 1} ≤ y ≤ max{tj |uj = 1}.

3. The two variables xj that define the current bounds on y can used as
the watched literals in a two-watched-literals scheme, see Moskewicz
et al. [31]. This means that we only need to reconsider the clique
coupling constraint for propagation if either the bounds of y have been
tightened or any of the two watched literals has been fixed to zero.

Note that we do not need to propagate the clique condition (7.3), because
this is implicitly done by propagating the other constraints in the system.

7.2.2 Lifting

As mentioned above, one of the products of probing is a set of implied
bounds (7.1), which amongst others can later be used to derive implied
bound cuts. For example, the implication xk = 1 → xj ≥ `1j can be lin-

earized to yield the implied bound cut xj − (`1j − `j)xk ≥ `j , provided that
the global lower bound `j is finite.

A particularly interesting special case is an implied lower bound of a
slack variable: Consider an inequality ax ≤ b and introduce an explicit
slack variable s ≥ 0 to obtain ax+ s = b. Now, for an implication

xk = 1→ s ≥ d > 0

we can derive the implied bound cut

s− dxk ≥ 0 ⇔ ax+ dxk ≤ b.

Since the implied bound cut dominates the original constraint ax ≤ b (see
Definition 2 on page 10), we can replace the original constraint by the cut.
We say that we “lifted dxk into the constraint”.

Note that lifting is sequence dependent. Namely, lifting a variable into a
constraint implicitly modifies the meaning of the corresponding slack vari-
able. Hence, a second binary variable that implies a positive lower bound

xp = 1→ s ≥ d′ > 0

on the constraint’s original slack variable can only be lifted into the con-
straint if d′ > d or xk and xp form a clique, xk +xp ≤ 1. In the former case,

49

we obtain ax + dxk + (d′ − d)xp ≤ b, in the latter case we get the stronger
lifted constraint ax+ dxk + d′xp ≤ b.

There are two different approaches for dealing with this sequence de-
pendence. Until Gurobi version 6.0 we immediately lifted a variable into
a constraint after probing on this variable detected the implication on the
slack, implicitly updating the slack’s definition for the subsequent probing
and lifting. This means that the lifting sequence was predetermined by
the probing candidate ordering. Moreover, this approach makes it virtu-
ally impossible to parallelize probing in a deterministic and still efficient
way, because it forces the probing candidates to be evaluated in a sequential
fashion.

Since Gurobi 6.5 we instead collect the lifting opportunities just like
regular implied bounds, which can be done in parallel. After probing is
completed, we apply the lifting in a sequential post-processing step. For
each constraint i ∈ M we consider the collected implications that provide
positive lower bounds on the slack variable si. To simplify the presentation,
we assume that those implications only originate from the xk = 1 probing
cases. Thus, for a given constraint ax ≤ b with explicit slack ax+ s = b we
have a set of implications

xk = 1→ s > dk

with binary variables xk and dk > 0 for all k ∈ L ⊆ I. To decide which
variables we should lift into the constraint, we use the following heuristic,
which assumes that we have constructed a clique table C with cliques C ∈ C
as in (7.2) and (7.3) that are implicitly or explicitly given by the constraint
system of the MIP. For each clique C ∈ C and each trivial clique C = {k} for
a binary variable xk we calculate a score as the sum of the lifting coefficients

SC =
∑
k∈C

dk,

with dk = 0 for variables that do not entail an implication on the slack’s lower
bound. Given these scores, we just lift a clique C into the constraint that
maximizes the score SC . Note that by decreasing all dk by max{dk|k ∈ C}
for the selected clique C we could iterate the lifting process if there still
exists any dk > 0, but this is not done in Gurobi.

Another important question regarding lifting is whether to apply it at
all to a given MIP instance. We have seen multiple times in computational
experiments that the impact of lifting can be pretty large in both direc-
tions: it can lead to speed-ups and degradations, depending on the problem

50

Table 29: Impact of disabling probing
default disable probing affected

bracket models tilim tilim faster slower time nodes models time

all 3155 568 579 425 550 1.07 1.08 — —
≥ 0 sec 2609 27 38 425 550 1.09 1.10 1574 1.15
≥ 1 sec 1761 27 38 404 518 1.12 1.13 1265 1.18
≥ 10 sec 1242 27 38 302 436 1.17 1.18 945 1.23
≥ 100 sec 702 27 38 178 269 1.25 1.21 551 1.34
≥ 1000 sec 230 27 38 71 100 1.33 1.17 201 1.38

instance. Even though lifting yields a provably stronger LP relaxation, it
adds non-zeros to the coefficient matrix and thereby often degrades the
performance and the numerical stability of the LP solves. Moreover, we
conjecture that lifting may impact (positively and negatively) the separa-
tion of cutting planes. In Gurobi, we enable lifting only for models with at
least a certain fraction of continuous variables or if the model seems to be
challenging for other reasons. Moreover, in some cases we restrict lifting to
only modify existing non-zero coefficients but not add new non-zeros.

The computational impact of Gurobi’s probing procedure can be seen in
Table 29. It yields an 18% reduction in branch-and-bound nodes and a 17%
improvement in solve time in the “≥ 10 sec” bracket. It finds reductions for
a large fraction of the non-trivial models and helps to solve 11 more models
within the time limit. Thus, probing is indeed an important component of
MIP presolve.

7.3 Disconnected components

Consider the problem

min cTUxU + cTV xV

s.t. ARUxU ≤ bR
AKV xV ≤ bK

(7.6)

with ` ≤ x ≤ u, xj ∈ Z for all j ∈ I, U ∪ V = N , U ∩ V = ∅, R ∪K = M ,
and R∩K = ∅. Then, solving problem (7.6) is equivalent to solving the two
individual MIPs

min{cTUxU : ARUxU ≤ bR} and min{cTV xV : AKV xV ≤ bK}

with corresponding bounds and integrality requirements. More generally,
if a problem decomposes into multiple independent components, we can

51

solve each component separately and construct the final solution vector from
the partial solutions corresponding to the individual components, see also
Gamrath et al. [22].

One issue with the simple approach of solving the components succes-
sively is that we only obtain a feasible solution to the full problem once
we have solved all components but the last and found a feasible solution to
the last component. If solving any but the last component turns out to be
challenging, then we cannot present any feasible solution to the user for a
very long time, or we may even hit the time limit before finding a complete
solution. Even though it does not increase the time to solve the MIP to
optimality, this property is usually undesirable in practice.

Another challenge arises if non-zero relative or absolute gap limits are
used. In the default settings, Gurobi would stop the search if the current
incumbent solution’s objective value is at most 0.01% away from the current
global dual objective bound. Obviously, such limits should apply to the
objective value of the full problem, but they cannot easily be broken down
into gap limits for the individual components.

For these reasons, Gurobi employs two different strategies for dealing
with models that feature disconnected components. First, during presolve,
we try to solve each component except for the largest one to true optimality
with zero gap. We impose pretty strict work limits for these sub-MIP calls
in order to guard against the case that a single component is too hard to
solve. Moreover, we disable presolving to avoid cases in which an “optimal”
solution to the presolved component model turns out to violate the feasibility
tolerances after uncrushing it to the master problem. For each component
that we were able to solve in this manner, we fix the corresponding variables
of the master problem to their optimal values.

A second decomposition algorithm is applied at the end of the root cut-
ting plane loop if the problem has multiple independent components at this
point in time. This can happen if we failed to solve any of the components
in presolve, or if subsequent problem modifications in presolve or in the root
cutting plane loop disaggregated the problem. This second algorithm solves
the individual components in an interleaved fashion, each using a zero gap
limit. It cycles through the component MIPs, processing 500 nodes for each
of them per iteration. Whenever a component MIP improves its current
incumbent solution, the corresponding piece of the full incumbent solution
gets updated and, if feasible solutions for each component exist, a new full
incumbent solution is reported to the user. The algorithm terminates if the
overall gap limits are reached or if any of the component MIPs turns out
to be infeasible. Moreover, if all components but one are solved to optimal-

52

Table 30: Impact of disabling disconnected component solving
default disable disconnected component solves affected

bracket models tilim tilim faster slower time nodes models time

all 3179 571 575 62 132 1.02 1.01 — —
≥ 0 sec 2612 9 13 62 132 1.03 1.03 398 1.22
≥ 1 sec 1750 9 13 56 102 1.04 1.03 271 1.29
≥ 10 sec 1192 9 13 51 84 1.06 1.04 213 1.36
≥ 100 sec 633 9 13 32 52 1.08 1.07 123 1.52
≥ 1000 sec 173 9 13 14 23 1.23 1.15 43 2.34

ity, we abort the decomposition algorithm and switch to the standard MIP
solving procedure.

As can be seen in Table 30, disconnected component solving has similar
properties as the symmetry handling methods of Sections 7.1 and 8.2: it
applies only to a small subset of the models, but on those it provides signif-
icant speed-ups. About 20% of the models in our test set have disconnected
components. These may be intrinsic to the original problem formulation,
but more often they appear only after other presolve reductions have mod-
ified the problem or root node fixings from probing or reduced cost fixing
discarded certain columns in the matrix. For those models, we observe a
36% performance improvement in the “≥ 10 sec” bracket, which translates
into an overall 6% speed-up. Note that in our experience, the majority of the
disconnected components are tiny, consisting only of a handful of columns
and rows. But in some cases the component sizes are non-negligible, and
solving them as a separate MIP provides a significant performance boost.

7.4 Biconnected components

Consider the problem

min cTUxU + cTV xV + ckxk

ARUxU +ARjxk ≤ bR
ASV xV +ASjxk ≤ bS

with ` ≤ x ≤ u, a single binary variable xk, variables xU and xV of arbitrary
type, U ∪ V = N \ {k}, U ∩ V = ∅, R ∪ S = M , and R ∩ S = ∅. We assume
|U | ≥ |V |. Now, if we set xk to a specific value xk := x̄k ∈ {0, 1}, then the
problem splits up into two independent components

min{cTUxU + ckx̄k : ARUxU ≤ bR −ARj x̄k}

53

Table 31: Impact of disabling biconnected component solving
default disable biconnected component solves affected

bracket models tilim tilim faster slower time nodes models time

all 3181 571 572 37 40 1.00 1.01 — —
≥ 0 sec 2611 6 7 37 40 1.00 1.01 166 1.01
≥ 1 sec 1744 6 7 34 39 1.00 1.01 127 1.02
≥ 10 sec 1180 6 7 26 29 1.00 1.01 97 1.02
≥ 100 sec 621 6 7 24 18 1.00 1.01 71 0.98
≥ 1000 sec 161 6 7 13 9 1.00 1.03 28 1.01

and
min{cTV xV + ckx̄k : ASV xV ≤ bS −ASj x̄k}. (7.7)

For such a biconnected problem we can apply a procedure that is similar to
probing, see Section 7.2. Namely, we tentatively set the articulation variable
xk to 0 and 1, and solve the smaller sub-problem (7.7) for each of the two
settings to obtain optimal solutions x̄0

V and x̄1
V . As in the disconnected

component presolving of Section 7.3 we have to use a zero gap limit for the
component solves and apply a work limit to guard against excessive sub-MIP
solve times.

If both sub-MIPs have been solved to optimality, we deduce implications
of xk to the variables in V , which may result either in globally valid fixings
or substitutions:

1. If xk := 0 renders (7.7) infeasible, we can fix xk := 1, and similarly in
the opposite case.

2. If x̄0
j = x̄1

j for j ∈ V , we can fix xj := x̄0
j .

3. If x̄0
j 6= x̄1

j for j ∈ V , we can substitute xj := x̄0
j + (x̄1

j − x̄0
j) · xk.

As can be seen in Table 31, biconnected components do not appear very
often in the MIP models of our test set. Moreover, exploiting them does
not produce big benefits, which suggests that in most cases the smaller
component V is very small, and fixing or substituting all of its variables
does not impact the subsequent solving process much.

7.5 Exploiting complementary slackness

By propagating the dual of the LP relaxation from a MIP in an appropriate
way we can sometimes derive bounds on the dual variables and reduced
costs. These bounds and reduced costs can be used to fix variables or detect
implied equalities in the MIP.

54

Suppose x? is a feasible solution to the primal LP

min{cTx : Ax ≥ b, x ≥ 0, x ∈ Rn} (7.8)

and y? is a feasible solution to the dual LP

max{bT y : AT y ≤ c, y ≥ 0, y ∈ Rm}. (7.9)

A necessary and sufficient condition for x? and y? to be optimal for (7.8)
and (7.9), respectively, is complementary slackness. This means that for all
j ∈ N and i ∈M we have

(i) x?j > 0 implies cj − (A·j)
T y? = 0, and

(ii) y?i > 0 implies Ai·x
? − bi = 0,

Let a MIP (2.1) with ◦i = “≥” for all i ∈ M and ` = 0 be given, and
assume that the LP relaxation of the MIP is bounded, i.e., it has a finite
optimal solution. If we only consider the continuous variables S = N \ I
and apply bound strengthening on (A·S)T y ≤ cS to get bounds on the dual
variables ¯̀≤ y ≤ ū, we can transfer the implications from complementary
slackness to MIPs even though they do not have in general a duality theory
like linear programs. Let us first show an example and afterwards state and
prove the theorem.

Example 10. Given the following problem:

min 2.1x1 + 5.9x2 + 8.9x3 − x4

1.05x2 + 2.2x3 − x4 ≥ 1

x1 + 2.5x2 + 2x4 ≥ 3

x2 + x3 − 0.1x4 ≥ 0.5

with x1, x2, x3, x4 ≥ 0 and x1, x2 ∈ Z. By applying bound strengthening on

2.2y1 + y3 ≤ 8.9

−y1 + 2y2 − 0.1y3 ≤ −1

and y1, y2, y3 ≥ 0 we obtain after a first step

0.11 ≤ y1 ≤ 4.05

0 ≤ y2 ≤ 1.97

0 ≤ y3 ≤ 8.9

as bounds. Because y1 ≥ ¯̀
1 = 0.11 the first constraint of the MIP can be

turned into an equation. Since c1 − sup{(A·1)T y} = 2.1 − 1.97 = 0.13 > 0
we can fix x1 to its lower bound.

55

Theorem 2. Let a MIP (2.1) with ◦i = “≥” for all i ∈ M and ` = 0 be
given. By considering only the continuous variables S = N \ I and applying
bound strengthening on (A·S)T y ≤ cS, y ≥ 0, to get valid bounds ¯̀≤ y ≤ ū,
the following holds:

(i) If ¯̀
i > 0 for i ∈M , we can turn constraint i into an equation Ai·x = bi.

(ii) If ck > sup{(A·k)T y : ¯̀≤ y ≤ ū} for k ∈ N , we can fix xk := 0.

Proof. If the MIP is infeasible, then any restriction to the problem is valid.
So, suppose the MIP has an optimal solution x?. We prove the two cases by
contradiction.

For case (ii) assume that the condition ck > sup{(A·k)T y : ¯̀≤ y ≤ ū}
holds for a variable k ∈ N , but we have x?k > 0. Then, consider the LP that
results from fixing xj := x?j for all j ∈ I \ {k}, which means to move the
contributions of the fixed integer variables to the right hand side b. Since
we only propagated dual constraints on the continuous variables and this
propagation does not depend on b, the bounds ¯̀≤ y ≤ ū are still valid. For
this “fixed LP” complementary slackness has to be satisfied in order for a
solution to be optimal. Thus, in any optimal solution x̃ to the fixed LP we
have x̃k = 0. But since 0 is integer, x̂ := (x?I\{k}, x̃) is also feasible for the
MIP even if k ∈ I. The solution x̂ has a smaller objective value than x?,
which contradicts our assumption that x? is optimal. Consequently, case (ii)
must hold for any optimal solution of the MIP.

For case (i) assume that ¯̀
i > 0 but Ai·x

? > bi. Again, consider the LP
resulting from fixing xj := x?j for all j ∈ I. As before, the bounds ¯̀≤ y ≤ ū
on the dual variables are valid also for this fixed LP. But since

Ai·x
? > bi ⇔ AiSx

?
S > bi −AiIx?I

with S := N \ I and yi ≥ ¯̀
i > 0 contradict the complementary slackness

conditions for the fixed LP, x?S cannot be optimal for the fixed LP and
thus x? cannot be optimal for the MIP. Consequently, case (i) must hold as
well.

About half of the models in our test set are affected by the comple-
mentary slackness reductions, see Table 32. On those models, the presolv-
ing procedure provides a 6% performance improvement in the “≥ 10 sec”
bracket, which is, in our view, surprisingly large for such a dual reduction.

56

Table 32: Impact of disabling complementary slackness reductions
default disable complementary slackness reductions affected

bracket models tilim tilim faster slower time nodes models time

all 3170 568 573 267 321 1.01 1.00 — —
≥ 0 sec 2618 21 26 267 321 1.02 1.00 1114 1.04
≥ 1 sec 1763 21 26 259 312 1.02 1.01 867 1.05
≥ 10 sec 1209 21 26 215 260 1.03 1.00 653 1.06
≥ 100 sec 658 21 26 135 169 1.05 0.99 390 1.08
≥ 1000 sec 208 21 26 63 67 1.14 1.05 153 1.19

7.6 Implied integer detection

A continuous variable that can only take integer values in any feasible solu-
tion is called an implied integer variable.

We use a primal and a dual method to detect implied integer variables.
Primal detection means that there is an equation

AiSxS + aijxj = ci

with S = N \ {j}, integer or implied integer variables xS , and a single
continuous variable xj , such that ci/aij ∈ Z and ais/aij ∈ Z for all s ∈ S.
In this case, xj will always take integral values in any feasible solution to
the MIP and can thus be marked as implied integer.

The dual detection method can be applied on variables xj that appear
only in inequality constraints. If the MIP has an optimal solution, then it
will always have an optimal solution x? in which the continuous variables
constitute a vertex solution of the “fixed LP”, i.e., the LP that is given by fix-
ing all integer variables xk, k ∈ I, to their solution values x?k. Consequently,
in such a solution at least one of the inequalities in which xj appears will
be satisfied by equality or xj will be at one of its bounds. Now, if `j , uj ∈ Z
and the primal detection infers integrality of xj for each inequality when
treated as equation, then there exists at least one optimal solution to the
MIP with xj ∈ Z. Hence, xj can be marked as an implied integer variable.

Implied integer variables are exploited at various places in the solving
process. First, cutting planes often get stronger coefficients for integer vari-
ables than for continuous variables or are not even applicable if a continuous
variable is involved in the base inequality. Moreover, strong branching can
be applied, the variables can be used as branching candidates, and domain
propagation can exploit their integrality. On the other hand, in primal
heuristics we do not need to force these variables to integer values because
they will automatically become integer if we find an integer feasible solution

57

Table 33: Impact of disabling implied integer detection
default disable implied integer detection affected

bracket models tilim tilim faster slower time nodes models time

all 3172 570 591 436 532 1.06 1.08 — —
≥ 0 sec 2621 24 45 436 532 1.07 1.11 1703 1.11
≥ 1 sec 1776 24 45 417 500 1.10 1.14 1367 1.13
≥ 10 sec 1233 24 45 330 396 1.13 1.18 1001 1.17
≥ 100 sec 698 24 45 188 252 1.25 1.34 591 1.30
≥ 1000 sec 237 24 45 66 105 1.71 2.06 219 1.78

for all regular integer variables.
The computational impact of the implied integer detection is depicted

in Table 33. The performance improvement is quite substantial with an
18% node count reduction and a 13% speed-up in the “≥ 10 sec” bracket.
Furthermore, exploiting implied integrality decreases the number of models
that hit the time limit by 21.

8 Node Presolve

Node presolve is a light-weight process that is called for each sub-problem
to be solved during the branch-and-bound tree search. In contrast to the
root (or main) presolve that is applied before the actual solving process
begins, node presolve in Gurobi does not modify the coefficient matrix A
or the right hand sides b of the constraints. It only tries to tighten the
local bounds of the variables in the sub-problem. Most notably, this is
done by bound strengthening, but we also employ conflict propagation to
exploit knowledge derived from infeasible sub-problems and orbital fixing to
deal with symmetry. Since node presolve is applied for every single node
in the search tree, it is very important to be efficient w.r.t. running time.
Nevertheless, if it seems to be worthwhile, we even apply probing at the
nodes, which can be very expensive.

Orbital fixing, bound strengthening, and conflict propagation are applied
prior to solving the LP relaxation. The latter two are called in a loop, which
is aborted after 5 iterations or if no further bounds could be strengthened.
Probing is applied after the LP relaxation has been solved and repeated
after resolving the LP if it was able to cut off the LP solution.

The total impact of node presolving is shown in Table 34. From all the
different classes of presolving methods covered in this paper, node presolve
provides the largest performance improvement, with bound strengthening

58

Table 34: Impact of disabling node presolve entirely
default disable node presolve affected

bracket models tilim tilim faster slower time nodes models time

all 3164 569 653 311 641 1.19 1.27 — —
≥ 0 sec 2609 19 103 311 641 1.25 1.34 1621 1.41
≥ 1 sec 1780 19 103 303 616 1.36 1.48 1361 1.49
≥ 10 sec 1243 19 103 228 496 1.51 1.65 1024 1.65
≥ 100 sec 730 19 103 131 339 1.87 2.16 636 2.06
≥ 1000 sec 283 19 103 50 180 3.12 4.20 266 3.36

Table 35: Impact of disabling bound strengthening at local nodes
default disable bound strengthening at nodes affected

bracket models tilim tilim faster slower time nodes models time

all 3171 571 583 344 516 1.06 1.04 — —
≥ 0 sec 2617 22 34 344 516 1.07 1.06 1606 1.11
≥ 1 sec 1771 22 34 336 499 1.10 1.08 1343 1.13
≥ 10 sec 1214 22 34 271 397 1.13 1.09 990 1.16
≥ 100 sec 687 22 34 163 262 1.19 1.17 591 1.23
≥ 1000 sec 219 22 34 59 101 1.30 1.31 202 1.33

and orbital fixing being the most important components. Unsurprisingly,
almost all models that require branching are affected by node presolving:
out of the 988 models without a path change, 963 are solved at the root
node. In the “≥ 10 sec” bracket we observe a 51% speed-up, but most
importantly, the number of tractable models increases by 84 due to node
presolving.

8.1 Bound strengthening

Bound strengthening at the nodes is done in the same way as in the root
presolve procedure, see Section 3.2. We assume that the local bounds at
the parent of the current node have already been propagated and thus only
need to reinvestigate the constraints in which the branching variable (or
variables, if we branched on hyperplanes) appears. This may lead to tighter
local bounds, which in turn triggers the reinvestigation of the constraints in
which the variables with updated bounds appear.

Table 35 assesses the computational impact of node bound strengthening.
With its 13% speed-up in the “≥ 10 sec” bracket it provides a larger speed-
up than the root presolve bound strengthening, compare Table 4 on page 9.
This is probably due to the fact that node bound strengthening catches
many of the reductions that are missing in the root presolve if root bound

59

strengthening is disabled.

8.2 Orbital fixing

Many MIP instances contain symmetries, which essentially means that for
any feasible solution there exist other solutions with the same objective value
that are equivalent up to a permutation of the column and row indices of the
matrix, see Definition 7 in Section 7.1. Those symmetries can significantly
impair the solving process, because they lead to symmetric copies of sub-
problems in the search tree that have to be solved, each of them containing
equivalent solutions.

Different methods to deal with symmetry in mixed integer programming
have been proposed in the literature. We refer to Margot [28] for a compre-
hensive survey. A recent computational study on the effectiveness of various
methods was conducted by Pfetsch and Rehn [33].

One particular way of improving the solving process for models with sym-
metry is the so-called orbital fixing, which was introduced by Margot [27],
see also Ostrowski [32]: Let P be the given MIP instance (2.1) and l̄ ≤ x ≤ ū
be the variable bounds at the local search tree node, consisting of branching
decisions and implied bounds from node presolve. Orbital fixing now consid-
ers the variable orbits O for a symmetry group that is valid for P ∩{x ≥ l̄}.
Namely, for an orbit O ∈ O we can tighten xj ≤ min{ūk : k ∈ O} for
all j ∈ O. Note that we could also tighten the lower bounds, but this re-
quires more complicated bookkeeping of the origin of the current local bound
changes and is not implemented in Gurobi.

Gurobi calculates a symmetry group G of the global problem P at the
root node of the search tree using an algorithm based on Saucy [19, 20].
An important question for implementing orbital fixing is how to compute a
symmetry group of the sub-problem P ∩ {x ≥ l̄} at a local node. Gurobi
represents the symmetry group G as a set of generators π : N → N . Usu-
ally, at a local node, we filter the generators by discarding those that are no
longer valid for the local lower bounds l̄. The remaining set of generators
gives rise to a reduced subset of orbits that are locally valid. This approach
is computationally cheap, but it is unable to exploit symmetry that is in-
troduced into the problem by branching, and it often discards orbits that
are at least partially still valid in the current node. Another approach is to
recompute the local symmetry group from scratch at each node, which can
be very time consuming. Nevertheless, it pays off for models with a certain
symmetry structure and is enabled in the default settings of Gurobi if such
a structure is detected.

60

Table 36: Impact of disabling orbital fixing
default disable orbital fixing affected

bracket models tilim tilim faster slower time nodes models time

all 3180 571 608 108 205 1.08 1.13 — —
≥ 0 sec 2614 10 47 108 205 1.10 1.16 510 1.61
≥ 1 sec 1758 10 47 107 199 1.15 1.21 466 1.68
≥ 10 sec 1215 10 47 95 169 1.20 1.27 392 1.77
≥ 100 sec 666 10 47 61 128 1.36 1.48 259 2.22
≥ 1000 sec 215 10 47 31 78 2.18 2.60 129 3.67

The performance impact of orbital fixing is very significant for models
that contain symmetry, see Table 36. about 20% of the models are affected
by orbital fixing, and on those we observe a 77% speed-up in the “≥ 10 sec”
bracket. Moreover, the number of time limit hits increases by 37 if orbital
fixing is disabled.

8.3 Conflict propagation

Conflict analysis [1] can be used to derive conflict constraints from infeasible
sub-problems of a MIP. These conflict constraints are propagated within
node presolve to derive tighter local bounds for the variables.

The implementation in SCIP [2, 3] derives a set of conflicting bounds
from the dual ray of the infeasible LP relaxation and applies backwards
propagation to transform this initial conflict set into a more globally useful
conflict constraint. Such conflict constraints are in general non-linear bound
disjunction constraints, except for the case in which all variables are binary.
They are propagated in SCIP using the two-watched-literals scheme, see
Moskewicz et al. [31].

Gurobi’s approach is slightly different. Instead of extracting one partic-
ular explanation for the infeasibility out of the dual ray, Gurobi just stores
the Farkas infeasibility proof as a regular linear constraint. This is given
by multiplying the dual ray y with the constraint matrix, i.e., yTAx ≤ yT b.
This Farkas proof captures all possible explanations of the infeasibility that
can be extracted from the dual ray. The downside is that it is usually much
denser than a single explanation, and that the propagation of such a lin-
ear constraint is not as efficient as the one of bound disjunction constraints
where the two-watched-literals scheme applies. Moreover, Gurobi 6.5 does
not include a backwards propagation step that would be useful to further
strengthen the conflict constraint.

Because propagating linear conflict constraints at each search tree node

61

Table 37: Impact of disabling conflict constraint propagation
default disable conflict propagation affected

bracket models tilim tilim faster slower time nodes models time

all 3172 571 577 189 240 1.02 1.01 — —
≥ 0 sec 2607 11 17 189 240 1.02 1.02 919 1.06
≥ 1 sec 1746 11 17 188 237 1.03 1.02 798 1.07
≥ 10 sec 1186 11 17 154 202 1.05 1.03 591 1.10
≥ 100 sec 658 11 17 115 139 1.09 1.07 364 1.16
≥ 1000 sec 183 11 17 34 52 1.14 1.14 118 1.22

can be expensive, Gurobi stores at most 100 of such constraints. When the
limit of conflict constraints is reached and a new one is generated, we discard
the constraint for which it was the longest time ago since it was discovered
or used to derive a tighter bound in propagation.

Our intuition is that the conflict constraints in Gurobi are typically only
useful in the neighborhood of the search tree node where they were discov-
ered. For this reason, we avoid the overhead of sharing or synchronizing
them between the threads of a parallel MIP search. Instead, each thread
manages its own private pool of conflict constraints.

Conflict analysis as implemented in Gurobi 6.5 provides a 5% speed-up
in the “≥ 10 sec” bracket, as can be seen in Table 37. Even though this
is non-negligible, it is a bit less than the 12% improvement that has been
reported by Achterberg [2] for his implementation in SCIP. This discrepancy
could arise from the less sophisticated implementation in Gurobi 6.5, which
misses backwards propagation, but it certainly also comes from the different
solver environment and the different test set.

8.4 Global probing

Similar to bound strengthening, probing is applied in the root presolve pro-
cedure, see Section 7.2, as well as in node presolve. Since this is a rather
expensive algorithm, we impose a work limit on probing in the root presolve
so that it is often aborted prematurely and some variables are not probed.
Moreover, subsequent presolve reductions as well as tighter bounds found
during the solving process (for example due to reduced cost fixing) may
yield additional potential for probing to find more problem reductions. For
this reason it makes sense to apply probing again, even if we have already
probed some or all of the variables during root presolve.

In the context of node presolve, globally valid probing means to use the
global bounds of the variables for the domain propagation within probing

62

Table 38: Impact of disabling globally valid probing at local nodes
default disable global probing at nodes affected

bracket models tilim tilim faster slower time nodes models time

all 3172 569 547 376 368 1.00 1.00 — —
≥ 0 sec 2634 36 14 376 368 1.00 1.00 1421 1.00
≥ 1 sec 1773 36 14 366 361 1.00 1.00 1231 1.00
≥ 10 sec 1229 36 14 296 296 1.01 0.99 928 1.01
≥ 100 sec 675 36 14 184 181 1.01 1.02 542 1.02
≥ 1000 sec 225 36 14 79 69 0.98 1.03 201 0.98

instead of the tighter local bounds at the current search tree node. During
the solving process we apply globally valid probing only once for each binary
variable, and only when it became fractional in a node’s LP relaxation solu-
tion. In contrast to the probing procedure in root presolve, the probing in
node presolve is only concerned with obtaining tighter bounds for the vari-
ables and with collecting clique and implication information. We are neither
substituting variables nor are we lifting variables into constraints, because
both would require complicated updates of the data structures stored during
the solving process, in particular the warm start LP bases of the open search
tree nodes.

In addition to the globally valid bound changes we derive statistics on
the number of implied bounds from rounding the fractional LP solution
value of a variable down or up, respectively. These statistics are used as
secondary criterion for the branching variable selection, see also Achterberg
and Berthold [4].

The globally valid probing at the nodes does not seem to provide any
performance improvement, see Table 38. It is performance neutral in the
number of nodes and the solve time, and it even increases the number of
time limit hits. The main reason for this disappointing result is that for
this benchmark test we only disabled the global probing at local nodes,
while the call to the probing method at the root node during the cutting
plane loop was kept. Thus, a good fraction of the integer variables that ever
become fractional in LP solutions during the solving process is still subject
to probing, and we collect implied bounds for them, which are important
for cutting planes and branching. The results in Table 38 just indicates that
the additional global probing on the variables that become fractional for the
first time during the tree search phase is irrelevant for performance.

63

Table 39: Impact of disabling locally valid probing at local nodes
default disable local probing at nodes affected

bracket models tilim tilim faster slower time nodes models time

all 3178 571 587 165 201 1.03 1.07 — —
≥ 0 sec 2611 9 25 165 201 1.04 1.07 734 1.12
≥ 1 sec 1743 9 25 165 199 1.05 1.11 717 1.12
≥ 10 sec 1189 9 25 149 189 1.07 1.15 607 1.15
≥ 100 sec 649 9 25 117 137 1.12 1.23 402 1.21
≥ 1000 sec 185 9 25 41 57 1.27 1.54 141 1.37

8.5 Local probing

Local probing means to exploit the local bounds of the current search tree
node inside the probing procedure. Obviously, the resulting bound changes
are then only valid within the sub-tree rooted at the current node. Never-
theless, local probing can sometimes be a very powerful tool to improve the
running time for certain problem instances.

The probing procedure itself is almost identical to global probing, except
that it uses local instead of global bounds. Another notable difference in
Gurobi 6.5 is that local probing is also applied to general integer variables,
where we consider the two cases xj ≤ bx̃jc and xj ≥ bx̃jc+ 1 with x̃ being
the solution to the node’s LP relaxation. But the main difference to global
probing is that local probing can in principle be applied for every variable at
every single search tree node, hence having the potential of being excessively
expensive. The challenge is to identify the cases in which the benefit from
tighter local bounds outweighs the costs of the probing procedure.

To drive this decision, Gurobi tracks two statistics during the solving
process:

• the work ratio w ∈ [0, 1], which is the work spent in local probing
relative to the total work spent on solving the problem instance, and

• the success ratio s ∈ [0, 1], which quantifies how often local probing
was able to cut off the current LP relaxation solution relative to the
total number of times probing was applied.

If s ≥ 2w, we apply local probing on the binary and integer variables that
are fractional in the current node’s LP relaxation. If w < 0.005 or s ≥ 10w
we apply local probing even on the variables with integral LP solution value.

Locally valid probing is an important component of Gurobi, as can be
seen in Table 39. It provides a 7% speed-up in the “≥ 10 sec” bracket and
helps to solve 16 additional models within the time limit, but it has to be

64

noted that locally valid probing is very sensitive to the tuning of the dynamic
work limits that are applied.

9 Conclusion

In this paper, we have given an overview on the presolve functionality in
the Gurobi commercial mixed-integer programming code. This overview
includes the description of more than thirty presolving techniques grouped
into six classes.

Extensive computational tests over a set of about three thousand models
show that presolving is extremely helpful in improving the performance of
mixed integer programming solvers. By disregarding the relatively uninter-
esting easy models from consideration the average solve time is scaled up by
a factor of nine when presolving is turned off completely. More importantly,
presolving allows to solve more than 500 models from our test set that are
otherwise intractable.

It is clear that we have left some unanswered questions, especially consid-
erably more details concerning implementation of the algorithms. However,
we hope that valuable ideas have been successfully demonstrated, and that
perhaps some of the ideas can be used to motivate further research in this
area.

Acknowledgments

This work has been supported by the Research Campus MODAL Mathe-
matical Optimization and Data Analysis Laboratories funded by the Federal
Ministry of Education and Research (BMBF Grant 05M14ZAM). All re-
sponsibility for the content of this publication is assumed by the authors.

References

[1] T. Achterberg. Conflict analysis in mixed integer programming. Dis-
crete Optimization, 4(1):4–20, March 2007. Special issue: Mixed Integer
Programming.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technis-
che Universität Berlin, 2007.

[3] T. Achterberg. SCIP: Solving constraint integer programs. Mathemat-
ical Programming Computation, 1(1):1–41, 2009.

65

[4] T. Achterberg and T. Berthold. Hybrid branching. In W.-J. van Hoeve
and J. Hooker, editors, CPAIOR 2009, Lecture Notes in Computer
Science 5547, pages 309–311. Springer-Verlag, May 2009.

[5] T. Achterberg and R. Wunderling. Mixed integer programming: An-
alyzing 12 years of progress. In M. Jünger and G. Reinelt, editors,
Facets of Combinatorial Optimization, pages 449–481. Springer Berlin
Heidelberg, 2013.

[6] E. D. Andersen and K. D. Andersen. Presolving in linear programming.
Mathematical Programming, 71:221–245, 1995.

[7] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. Conflict
graphs in solving integer programming problems. European Journal of
Operational Research, 121(1):40–55, 2000.

[8] A. Atamtürk and M. W. P. Savelsbergh. Integer-programming software
systems. Annals of Operations Research, 140:67–124, 2005.

[9] E. Balas and E. Zemel. An algorithm for large zero-one knapsack prob-
lems. Operations Research, 28(5):1130–1154, 1980.

[10] E. M. L. Beale and J. A. Tomlin. Special facilities in a general math-
ematical programming system for nonconvex problems using ordered
sets of variables. Lawrence, J (ed.) Proceedings of the Fifth Intena-
tional Conference on Operations Research, pages 447–454, 1970.

[11] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling.
Mixed-integer programming: A progress report. In M. Grötschel, edi-
tor, The Sharpest Cut: The Impact of Manfred Padberg and His Work,
MPS-SIAM Series on Optimization, chapter 18, pages 309–325. SIAM,
2004.

[12] R. E. Bixby and E. Rothberg. Progress in computational mixed integer
programming—a look back from the other side of the tipping point.
Annals of Operations Research, 149:37–41, 2007.

[13] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathemat-
ical programming problems prior to applying the simplex algorithm.
Mathematical Programming, 8:54–83, 1975.

[14] S. F. Chang and S. T. McCormick. Implementation and computational
results for the hierarchical algorithm for making sparse matrices sparser.
ACM Transactions on Mathematical Software, 19(3):419–441, 1993.

66

[15] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial prob-
lems. Discrete Mathematics, 4(4):305 – 337, 1973.

[16] H. Crowder, E. L. Johnson, and M. Padberg. Solving Large-Scale Zero-
One Linear Programming Problems. Operations Research, 31(5):803–
834, 1983.

[17] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming,
102(1):71–90, 2005.

[18] G. B. Dantzig. Discrete-Variable Extremum Problems. Operations Re-
search, 5(2):266–277, 1957.

[19] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting
structure in symmetry detection for cnf. In Proceedings of the 41st
annual Design Automation Conference, pages 530–534. ACM, 2004.

[20] P. T. Darga, K. A. Sakallah, and I. L. Markov. Faster symmetry dis-
covery using sparsity of symmetries. In Proceedings of the 45th annual
Design Automation Conference, pages 149–154. ACM, 2008.

[21] A. Fügenschuh and A. Martin. Computational integer programming
and cutting planes. In K. Aardal, G. L. Nemhauser, and R. Weismantel,
editors, Discrete Optimization, volume 12 of Handbooks in Operations
Research and Management Science, chapter 2, pages 69–122. Elsevier,
2005.

[22] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger.
Progress in presolving for mixed integer programming. Mathematical
Programming Computation, 7(4):367–398, 2015.

[23] M. Guignard and K. Spielberg. Logical reduction methods in zero-
one programming: Minimal preferred variables. Operations Research,
29(1):49–74, 1981.

[24] K. L. Hoffman and M. Padberg. Improving LP-Representations of Zero-
One Linear Programs for Branch-and-Cut. ORSA Journal on Comput-
ing, 3(2):121–134, 1991.

[25] E. L. Johnson and M. W. Padberg. Degree-two inequalities, clique
facets, and biperfect graphs. Annals of Discrete Mathematics, 16:169–
187, 1982.

67

[26] E. L. Johnson and U. H. Suhl. Experiments in integer programming.
Discrete Applied Mathematics, 2(1):39–55, 1980.

[27] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Pro-
gramming, 98(1–3):3–21, 2003.

[28] F. Margot. Symmetry in integer linear programming. In 50 Years of
Integer Programming 1958-2008, pages 647–686. Springer, 2010.

[29] H. M. Markowitz. The elimination form of the inverse and its applica-
tions to linear programming. Management Science, 3:255–269, 1957.

[30] L. Miranian and M. Gu. Strong rank revealing LU factorizations. Linear
Algebra and its Applications, 367(0):1 – 16, 2003.

[31] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the Design
Automation Conference, July 2001.

[32] J. Ostrowski. Symmetry in Mixed Integer Programming. PhD thesis,
Lehigh University, 2009.

[33] M. E. Pfetsch and T. Rehn. A computational comparison of symme-
try handling methods for mixed integer programs. Technical report,
Optimization Online, 2015.

[34] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed
integer programming problems. ORSA Journal on Computing, 6:445–
454, 1994.

[35] J. P. Shectman and N. V. Sahinidis. A finite algorithm for global min-
imization of separable concave programs. Journal of Global Optimiza-
tion, 12:1–36, 1998.

[36] U. Suhl and R. Szymanski. Supernode processing of mixed-integer mod-
els. Computational Optimization and Applications, 3(4):317–331, 1994.

[37] J. A. Tomlin. Pivoting for size and sparsity in linear programming
inversion routes. IMA Journal of Applied Mathematics, 10(3):289–295,
1972.

68

