Skip to main content

Comments

3 comments

  • wangyu hu
    • Gurobi-versary
    • First Comment
    • First Question

    Hello every one,
    I used matlab yalmip gurobi to solve a MINLP problem, but in the process of running, I got such a result.
    It really took a long time. I want to hurry as soon as possible. How can I modify it?Thank you.

    0
  • wangyu hu
    • Gurobi-versary
    • First Comment
    • First Question

    Set parameter MIPGap to value 0.15
    Set parameter CrossoverBasis to value 0
    Set parameter NodefileDir to value ""
    Set parameter NonConvex to value 2
    Set parameter PreSOS2BigM to value 0
    Set parameter TuneTrials to value 3
    Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64)
    Thread count: 2 physical cores, 4 logical processors, using up to 4 threads
    Optimize a model with 8688 rows, 2939 columns and 16170 nonzeros
    Model fingerprint: 0x510e4880
    Model has 889 quadratic constraints
    Variable types: 1470 continuous, 1469 integer (1469 binary)
    Coefficient statistics:
    Matrix range [1e-05, 2e+06]
    QMatrix range [8e-01, 2e+02]
    QLMatrix range [1e+00, 5e+06]
    Objective range [1e+00, 1e+00]
    Bounds range [1e+00, 1e+00]
    RHS range [1e-05, 2e+06]
    QRHS range [4e+02, 5e+06]
    Presolve removed 5717 rows and 1466 columns
    Presolve time: 0.24s
    Presolved: 9999 rows, 3089 columns, 27942 nonzeros
    Presolved model has 16 quadratic constraint(s)
    Presolved model has 1443 bilinear constraint(s)
    Variable types: 2436 continuous, 653 integer (645 binary)
    Root relaxation: objective -7.713198e+06, 3419 iterations, 0.12 seconds (0.07 work units)

    Nodes | Current Node | Objective Bounds | Work
    Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

    0 0 -7340583.0 0 1061 - -7340583.0 - - 1s
    0 0 -5456100.0 0 1037 - -5456100.0 - - 2s
    H 0 0 -362049.4931 -5456100.0 1407% - 2s
    H 0 0 -383732.1446 -5456100.0 1322% - 2s
    0 0 -5383226.9 0 839 -383732.14 -5383226.9 1303% - 2s
    0 0 -4753175.2 0 1201 -383732.14 -4753175.2 1139% - 3s
    0 0 -4751388.3 0 1191 -383732.14 -4751388.3 1138% - 3s
    0 0 -4514750.7 0 1186 -383732.14 -4514750.7 1077% - 3s
    0 0 -4513561.5 0 1246 -383732.14 -4513561.5 1076% - 4s
    0 0 -4432402.9 0 1154 -383732.14 -4432402.9 1055% - 5s
    0 0 -4415286.3 0 1221 -383732.14 -4415286.3 1051% - 5s
    0 0 -4400268.0 0 1300 -383732.14 -4400268.0 1047% - 6s
    0 0 -4398325.0 0 1182 -383732.14 -4398325.0 1046% - 6s
    0 0 -4369984.6 0 1220 -383732.14 -4369984.6 1039% - 7s
    0 0 -4366191.3 0 1251 -383732.14 -4366191.3 1038% - 7s
    0 0 -4355759.8 0 1292 -383732.14 -4355759.8 1035% - 8s
    0 0 -4354081.3 0 1185 -383732.14 -4354081.3 1035% - 8s
    0 0 -4347553.3 0 1286 -383732.14 -4347553.3 1033% - 9s
    0 0 -4345474.9 0 1269 -383732.14 -4345474.9 1032% - 9s
    0 0 -4342547.0 0 1264 -383732.14 -4342547.0 1032% - 9s
    0 0 -4341583.0 0 1307 -383732.14 -4341583.0 1031% - 10s
    0 0 -4340819.5 0 1279 -383732.14 -4340819.5 1031% - 10s
    0 0 -4336649.3 0 1135 -383732.14 -4336649.3 1030% - 15s
    0 2 -4336649.3 0 1129 -383732.14 -4336649.3 1030% - 15s
    20 23 -3586894.9 8 1132 -383732.14 -3895079.4 915% 949 20s
    60 61 -3191901.1 20 987 -383732.14 -3895079.4 915% 972 25s
    152 159 -2921582.2 54 455 -383732.14 -3895079.4 915% 656 30s
    305 278 -3471022.5 4 1334 -383732.14 -3891830.7 914% 464 35s
    364 334 -3363563.8 17 1093 -383732.14 -3891830.7 914% 447 42s
    387 367 -3163760.1 22 1078 -383732.14 -3891830.7 914% 502 52s
    463 426 -3027670.4 30 1055 -383732.14 -3891830.7 914% 465 56s
    486 427 -2937899.1 43 235 -383732.14 -3891830.7 914% 468 62s
    H 487 406 -435465.6558 -3891830.7 794% 467 65s
    489 407 -3022331.1 48 271 -435465.66 -3876612.8 790% 465 70s
    491 408 -922522.93 105 337 -435465.66 -3490080.9 701% 463 77s
    493 410 -2342155.3 72 275 -435465.66 -3266108.5 650% 461 82s
    496 412 -2891737.0 39 314 -435465.66 -2891737.0 564% 458 85s
    502 416 -689802.26 109 314 -435465.66 -2769523.4 536% 453 90s
    511 422 -2749007.0 41 283 -435465.66 -2749007.0 531% 445 95s
    517 426 -2746019.7 47 310 -435465.66 -2746019.7 531% 440 104s
    518 426 -518114.39 140 310 -435465.66 -2746019.7 531% 439 105s
    520 431 -2740257.6 12 1257 -435465.66 -2740257.6 529% 532 118s
    522 432 -2694582.4 13 1263 -435465.66 -2724339.3 526% 539 122s
    528 436 -2691740.2 14 1215 -435465.66 -2718827.9 524% 545 125s
    535 442 -2538093.2 16 1123 -435465.66 -2694004.5 519% 561 130s
    542 445 -2477096.7 17 1171 -435465.66 -2694004.5 519% 569 135s
    553 454 -2437827.5 20 1025 -435465.66 -2694004.5 519% 604 140s
    563 462 -2369429.7 22 972 -435465.66 -2694004.5 519% 619 145s
    573 469 -2375749.5 25 1025 -435465.66 -2694004.5 519% 631 150s
    587 477 -2300924.5 28 1056 -435465.66 -2694004.5 519% 654 155s
    607 496 -2009059.8 34 894 -435465.66 -2694004.5 519% 666 162s
    616 497 -1983229.1 36 914 -435465.66 -2694004.5 519% 669 165s
    628 509 -1942341.6 39 892 -435465.66 -2694004.5 519% 680 170s
    643 521 -1860475.1 45 914 -435465.66 -2694004.5 519% 684 175s
    662 527 -1773302.5 51 890 -435465.66 -2694004.5 519% 681 182s
    668 531 -1782337.8 53 1113 -435465.66 -2694004.5 519% 686 186s
    687 544 -1715181.1 56 961 -435465.66 -2694004.5 519% 705 194s
    699 546 -1699214.5 60 1046 -435465.66 -2694004.5 519% 710 196s
    713 551 -1624891.6 65 918 -435465.66 -2694004.5 519% 725 202s
    726 571 -1484962.5 71 774 -435465.66 -2694004.5 519% 726 205s
    762 573 -1399661.8 81 744 -435465.66 -2694004.5 519% 705 210s
    816 594 -574869.28 103 627 -435465.66 -2694004.5 519% 696 217s
    851 587 -447845.28 113 616 -435465.66 -2692339.0 518% 687 221s
    873 599 -2036687.8 21 1171 -435465.66 -2692339.0 518% 706 229s
    883 602 -2224034.8 24 1150 -435465.66 -2692339.0 518% 711 234s
    889 611 -2193547.0 28 1159 -435465.66 -2692339.0 518% 710 243s
    900 618 infeasible 36 -435465.66 -2692339.0 518% 727 249s
    913 636 -1763919.4 43 1042 -435465.66 -2692339.0 518% 739 256s
    939 641 -1619716.7 52 1029 -435465.66 -2692339.0 518% 737 260s
    953 681 -1540078.6 58 877 -435465.66 -2692339.0 518% 735 266s
    998 725 -1432257.8 72 805 -435465.66 -2692339.0 518% 731 270s
    1057 764 -1123128.5 84 715 -435465.66 -2692339.0 518% 713 275s
    1216 874 -557441.59 105 668 -435465.66 -2689779.6 518% 670 284s
    1323 855 -2659028.3 17 1035 -435465.66 -2689602.2 518% 637 290s
    1352 853 -2479827.7 22 1035 -435465.66 -2689602.2 518% 648 298s
    1360 866 -2385124.6 27 1056 -435465.66 -2689602.2 518% 664 304s
    1375 872 -2258562.3 35 996 -435465.66 -2689602.2 518% 675 310s
    1386 895 -2090806.4 37 1016 -435465.66 -2689602.2 518% 685 316s
    1413 918 -1823789.2 43 855 -435465.66 -2689602.2 518% 694 323s
    1445 1025 -1723390.5 52 710 -435465.66 -2689602.2 518% 704 332s
    1563 1095 -1188552.0 86 436 -435465.66 -2689602.2 518% 669 337s
    1678 1152 -543682.53 109 482 -435465.66 -2683694.6 516% 644 344s
    1797 1183 -2218841.4 17 1147 -435465.66 -2683694.6 516% 622 351s
    1874 1197 -1887292.1 23 1041 -435465.66 -2683694.6 516% 615 357s
    1908 1223 -1488702.9 31 779 -435465.66 -2683694.6 516% 620 364s
    1934 1295 -1147906.7 48 870 -435465.66 -2675683.4 514% 625 372s
    * 2047 1305 113 -473835.4654 -2673366.5 464% 609 379s
    * 2051 1305 112 -473844.3990 -2673366.5 464% 608 379s
    * 2053 1305 111 -473854.3268 -2673366.5 464% 607 379s
    2091 1331 -2410551.9 22 1110 -473854.33 -2672935.2 464% 612 386s
    2117 1359 -2054439.9 39 997 -473854.33 -2672935.2 464% 622 393s
    2145 1417 -1673289.7 47 904 -473854.33 -2666838.5 463% 629 402s
    2221 1439 -2373255.6 20 1080 -473854.33 -2666838.5 463% 628 411s
    2261 1450 -1896099.2 35 964 -473854.33 -2666838.5 463% 634 418s
    2272 1487 -1656375.8 45 1012 -473854.33 -2653365.5 460% 639 426s
    2317 1519 -2352238.8 24 1127 -473854.33 -2653365.5 460% 648 436s
    2349 1557 -1579656.7 39 1164 -473854.33 -2653365.5 460% 659 445s
    2387 1645 -1141367.6 55 857 -473854.33 -2653331.6 460% 669 455s
    2495 1707 -2401349.8 17 1103 -473854.33 -2653331.6 460% 656 463s
    2593 1744 -1893451.9 26 1073 -473854.33 -2653331.6 460% 648 472s
    2630 1768 -1428861.7 41 1153 -473854.33 -2653331.6 460% 657 480s
    2670 1813 -1154329.1 49 988 -473854.33 -2640210.9 457% 664 491s
    2728 1853 -2299572.3 17 1126 -473854.33 -2640210.9 457% 673 503s
    2778 1879 -2054988.8 25 1104 -473854.33 -2640210.9 457% 680 515s
    2804 1914 -1604543.8 45 983 -473854.33 -2617718.1 452% 692 529s
    2851 1953 -2098615.0 28 1065 -473854.33 -2617718.1 452% 702 540s
    2890 2000 -1375219.4 52 860 -473854.33 -2617170.6 452% 709 561s
    2953 2047 -1872041.8 23 1041 -473854.33 -2617170.6 452% 722 574s
    3002 2206 -1203131.3 43 781 -473854.33 -2617151.9 452% 729 586s
    3205 2247 -2345515.0 18 1159 -473854.33 -2617151.9 452% 705 597s
    3249 2316 -1697442.0 27 958 -473854.33 -2617151.9 452% 717 611s
    3330 2439 -1385836.3 58 940 -473854.33 -2617151.9 452% 719 631s
    3481 2496 -880033.18 94 823 -473854.33 -2602001.1 449% 710 647s
    3585 2539 -2580304.0 18 1217 -473854.33 -2602001.1 449% 711 662s
    3638 2566 -2197551.0 23 1103 -473854.33 -2602001.1 449% 723 677s
    3669 2648 -2089203.4 26 1077 -473854.33 -2602001.1 449% 726 692s
    3775 2752 -1747518.9 37 949 -473854.33 -2602001.1 449% 730 709s
    3929 2841 -1029785.6 48 535 -473854.33 -2591900.9 447% 726 730s
    4038 2941 -1723067.6 37 1031 -473854.33 -2585164.1 446% 730 758s
    4168 2986 -2531234.8 19 1239 -473854.33 -2583685.5 445% 724 776s
    4213 3033 -1489604.1 41 965 -473854.33 -2583685.5 445% 736 798s
    4270 3079 -930922.87 59 699 -473854.33 -2574045.3 443% 743 814s
    4337 3153 -1862574.1 29 1037 -473854.33 -2568933.9 442% 750 830s
    4425 3204 -1106333.8 72 547 -473854.33 -2562510.5 441% 757 845s
    4492 3257 -1946664.4 21 1005 -473854.33 -2562510.5 441% 764 866s
    4557 3319 -1199314.2 36 864 -473854.33 -2561338.4 441% 779 884s
    4631 3436 -1953541.0 29 1085 -473854.33 -2561183.4 441% 787 903s
    4787 3584 -1600599.2 25 886 -473854.33 -2554296.7 439% 789 923s
    4972 3796 -1959328.9 22 1120 -473854.33 -2553424.4 439% 783 946s
    5189 4048 -1607586.1 45 841 -473854.33 -2553294.7 439% 773 970s
    5515 4161 -2014126.3 26 1158 -473854.33 -2550025.4 438% 755 998s
    5658 4248 -2066086.9 25 1029 -473854.33 -2548517.1 438% 760 1022s
    5780 4351 -2239696.0 19 1118 -473854.33 -2544425.2 437% 762 1051s
    5913 4406 -2330889.8 20 1218 -473854.33 -2543435.5 437% 768 1080s

    0
  • Jaromił Najman
    • Gurobi Staff Gurobi Staff

    Hi,

    There can be many reasons for a slowly solving non-convex MINLP.

    • The coefficient ranges are not great in your case. Please refer to our Guidelines for Numerical Issues and try to improve the model scaling. This may already drastically improve the solver's performance.
    • It looks like you did not provide finite bounds for all variables. In particular, it is strongly recommended to provide tight finite bounds for all variables participating in nonlinear terms when solving a non-convex model.
    • Your model is quite big given that it's a non-convex MINLP. Thus, it it somewhat expected to take quite some time to solve.
    • If possible, you should upgrade to Gurobi's latest version 10.

    You could also write the model to an LP file and share it with the Community. Maybe someone has an idea of how to solve the model in a better way. Note that uploading files in the Community Forum is not possible but we discuss an alternative in Posting to the Community Forum.

    Best regards, 
    Jaromił

    0

Please sign in to leave a comment.