Solver gets stuck in Root simplex log...
AnsweredDear ladies and gentlemen,
I have a problem with solving the MILP optimization problem. I only apply the Gurobi, thus I am not quite familiar with the different options regarding the input arguments of the solver. But I know some. When I try the solve my problem it gets stuck in the "Root simplex log..." after the "Root crossover log...". Maybe it is a numerical problem. I hope you can help me. I use the maximal number the threads (32).
In some runs durring the "Root crossover log..." the solver says that the "Warning: Markowitz tolerance tightened to ..."
Here are my keyword arguments for the solver I use.
BarConvTol=1e-5 method=2 MIPGap=0.03 crossover=0
The Output is in the file below. It is not all but I think the important ones.
This is as much as it came, after 6 days .
Read LP format model from file /tmp/tmp9o_qdnbw.pyomo.lp
Reading time = 1.43 seconds
x804481: 651424 rows, 451201 columns, 2070990 nonzeros
Set parameter QCPDual to value 1
Set parameter Threads to value 32
Set parameter BarConvTol to value 1e-05
Set parameter Method to value 2
Set parameter MIPGap to value 0.03
Set parameter Crossover to value 0
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (linux64)
Thread count: 16 physical cores, 32 logical processors, using up to 32 threads
Optimize a model with 651424 rows, 451201 columns and 2070990 nonzeros
Model fingerprint: 0x5f944b92
Variable types: 451129 continuous, 72 integer (72 binary)
Coefficient statistics:
Matrix range [1e-07, 9e+03]
Objective range [2e-04, 5e+05]
Bounds range [1e-03, 8e+04]
RHS range [1e-08, 6e+04]
Presolve removed 222508 rows and 129291 columns
Presolve time: 3.11s
Presolved: 428916 rows, 321910 columns, 1575428 nonzeros
Variable types: 321876 continuous, 34 integer (34 binary)
Root barrier log...
Ordering time: 3.60s
Barrier statistics:
Dense cols : 541
Free vars : 10560
AA' NZ : 6.535e+06
Factor NZ : 4.592e+07 (roughly 700 MB of memory)
Factor Ops : 7.060e+10 (less than 1 second per iteration)
Threads : 31
Objective Residual
Iter Primal Dual Primal Dual Compl Time
0 3.43895742e+13 -1.57073217e+14 3.58e+07 1.54e+00 3.17e+10 10s
1 3.17147198e+13 -1.54164311e+14 3.35e+07 3.12e+06 2.87e+10 11s
2 2.42807773e+13 -1.48536538e+14 2.66e+07 1.94e+06 2.23e+10 11s
3 1.77841492e+13 -1.43851149e+14 1.97e+07 1.47e+06 1.67e+10 12s
4 7.43725662e+12 -1.34452807e+14 8.28e+06 6.56e+05 7.91e+09 12s
5 2.16852601e+12 -9.08061053e+13 2.47e+06 1.28e+05 2.34e+09 13s
6 7.08411555e+11 -3.34580164e+13 8.43e+05 1.16e+04 7.44e+08 13s
7 2.71311469e+11 -1.95479941e+13 3.37e+05 3.76e+03 2.94e+08 13s
8 1.31554357e+11 -1.33011812e+13 1.53e+05 1.53e+03 1.45e+08 14s
9 9.04007888e+10 -9.05316729e+12 1.07e+05 5.37e+02 9.54e+07 14s
10 2.71187290e+10 -6.09917370e+12 3.14e+04 1.65e+02 3.02e+07 14s
11 8.50018281e+09 -3.52157303e+12 8.54e+03 4.14e+01 9.48e+06 15s
12 5.33690923e+09 -1.60820954e+12 4.75e+03 7.62e+00 4.27e+06 15s
13 4.85881429e+09 -1.13962686e+12 4.21e+03 4.26e+00 3.24e+06 15s
14 4.11616262e+09 -8.13672148e+11 3.35e+03 2.49e+00 2.31e+06 16s
15 3.98230987e+09 -7.28515309e+11 3.19e+03 2.09e+00 2.10e+06 16s
16 3.12132895e+09 -4.59434581e+11 2.18e+03 1.05e+00 1.26e+06 16s
17 1.49441433e+09 -2.20149151e+11 4.16e+02 2.69e-01 3.59e+05 17s
18 1.28762514e+09 -6.60616581e+10 3.15e+02 4.32e-02 1.26e+05 17s
19 9.94186586e+08 -3.51084308e+10 2.15e+02 1.70e-02 6.58e+04 18s
20 7.22384657e+08 -1.72834038e+10 1.33e+02 5.73e-03 3.11e+04 18s
21 5.03557417e+08 -7.77843099e+09 8.03e+01 1.54e-03 1.38e+04 18s
22 2.83945560e+08 -2.96970726e+09 3.64e+01 1.41e-04 5.01e+03 19s
23 5.00300722e+07 -9.39231613e+08 3.75e-02 4.87e-05 1.08e+03 19s
24 2.37305105e+07 -4.58017989e+08 4.34e-03 1.33e-04 5.16e+02 19s
25 2.16254329e+07 -3.07723682e+08 3.04e-03 1.46e-04 3.53e+02 20s
26 2.13175682e+07 -2.21936209e+08 2.83e-03 1.38e-04 2.61e+02 20s
27 2.05483477e+07 -1.80028744e+08 2.35e-03 1.39e-04 2.15e+02 20s
28 1.71728671e+07 -1.15869657e+07 1.64e-04 2.10e-04 3.07e+01 21s
29 1.62522559e+07 8.97827243e+06 3.25e-05 4.49e-05 7.78e+00 21s
30 1.60269289e+07 1.26574472e+07 1.70e-05 2.00e-05 3.61e+00 22s
31 1.58721321e+07 1.41726221e+07 7.68e-06 9.80e-06 1.82e+00 22s
32 1.58206613e+07 1.48021638e+07 4.97e-06 5.54e-06 1.09e+00 23s
33 1.57951786e+07 1.51359755e+07 3.80e-06 3.42e-06 7.07e-01 23s
34 1.57511640e+07 1.52721234e+07 1.99e-06 2.52e-06 5.13e-01 23s
35 1.57416804e+07 1.54220577e+07 1.67e-06 1.55e-06 3.43e-01 24s
36 1.57375052e+07 1.54414243e+07 1.54e-06 1.42e-06 3.17e-01 24s
37 1.57285579e+07 1.55182913e+07 1.31e-06 9.47e-07 2.26e-01 25s
38 1.57169899e+07 1.55448631e+07 9.89e-07 7.96e-07 1.85e-01 26s
39 1.57143689e+07 1.55652189e+07 9.22e-07 6.76e-07 1.60e-01 26s
40 1.57126001e+07 1.55938972e+07 8.81e-07 4.91e-07 1.28e-01 27s
41 1.57048457e+07 1.56055687e+07 6.97e-07 4.16e-07 1.07e-01 28s
42 1.57001063e+07 1.56189618e+07 5.87e-07 3.33e-07 8.71e-02 28s
43 1.56937646e+07 1.56241427e+07 4.40e-07 3.01e-07 7.47e-02 29s
44 1.56915461e+07 1.56294524e+07 3.91e-07 2.70e-07 6.66e-02 29s
45 1.56899235e+07 1.56376921e+07 3.56e-07 2.20e-07 5.60e-02 30s
46 1.56891768e+07 1.56387080e+07 3.40e-07 2.13e-07 5.41e-02 30s
47 1.56855219e+07 1.56425839e+07 2.63e-07 1.88e-07 4.60e-02 31s
48 1.56836827e+07 1.56473579e+07 2.26e-07 1.57e-07 3.89e-02 32s
49 1.56820262e+07 1.56494538e+07 1.93e-07 1.43e-07 3.49e-02 32s
50 1.56816937e+07 1.56523603e+07 1.87e-07 1.25e-07 3.14e-02 33s
51 1.56811958e+07 1.56546082e+07 1.77e-07 1.09e-07 2.85e-02 33s
52 1.56804402e+07 1.56555965e+07 1.64e-07 1.02e-07 2.66e-02 34s
53 1.56797900e+07 1.56564794e+07 1.52e-07 9.66e-08 2.50e-02 35s
54 1.56791605e+07 1.56582164e+07 1.41e-07 8.55e-08 2.24e-02 35s
55 1.56782048e+07 1.56586630e+07 1.24e-07 8.24e-08 2.09e-02 36s
56 1.56777339e+07 1.56601054e+07 1.16e-07 7.30e-08 1.89e-02 36s
57 1.56775115e+07 1.56607047e+07 1.13e-07 6.89e-08 1.80e-02 37s
58 1.56766038e+07 1.56616192e+07 9.67e-08 6.29e-08 1.60e-02 37s
59 1.56761602e+07 1.56638319e+07 8.93e-08 4.69e-08 1.32e-02 38s
60 1.56753880e+07 1.56647283e+07 7.73e-08 3.89e-08 1.14e-02 39s
61 1.56747558e+07 1.56652314e+07 6.77e-08 3.01e-08 1.02e-02 39s
62 1.56741181e+07 1.56662854e+07 5.78e-08 2.39e-08 8.38e-03 40s
63 1.56731535e+07 1.56668940e+07 4.28e-08 2.40e-08 6.70e-03 41s
64 1.56729783e+07 1.56674637e+07 4.02e-08 2.77e-08 5.90e-03 41s
65 1.56728689e+07 1.56677608e+07 3.85e-08 1.50e-08 5.46e-03 42s
66 1.56721127e+07 1.56681559e+07 2.70e-08 1.79e-08 4.23e-03 42s
67 1.56719758e+07 1.56686212e+07 2.50e-08 1.21e-08 3.59e-03 43s
68 1.56716774e+07 1.56688168e+07 2.06e-08 8.69e-09 3.06e-03 44s
69 1.56712983e+07 1.56691173e+07 1.51e-08 1.71e-08 2.33e-03 44s
70 1.56712287e+07 1.56692684e+07 1.41e-08 2.59e-08 2.10e-03 45s
71 1.56711071e+07 1.56693797e+07 1.24e-08 2.67e-08 1.85e-03 45s
72 1.56710945e+07 1.56694786e+07 1.22e-08 1.59e-08 1.73e-03 46s
73 1.56708469e+07 1.56696115e+07 8.65e-09 2.63e-08 1.32e-03 47s
74 1.56707907e+07 1.56697368e+07 7.85e-09 2.79e-08 1.13e-03 47s
75 1.56706551e+07 1.56697933e+07 5.97e-09 1.95e-08 9.21e-04 48s
76 1.56705969e+07 1.56698927e+07 5.16e-09 2.19e-08 7.53e-04 49s
77 1.56704804e+07 1.56699878e+07 3.55e-09 1.85e-08 5.26e-04 49s
78 1.56704190e+07 1.56700490e+07 2.73e-09 1.49e-08 3.95e-04 50s
79 1.56703602e+07 1.56700967e+07 1.94e-09 1.24e-08 2.82e-04 51s
80 1.56703359e+07 1.56701096e+07 1.63e-09 1.90e-08 2.42e-04 51s
81 1.56703273e+07 1.56701125e+07 1.52e-09 2.32e-08 2.30e-04 52s
82 1.56703018e+07 1.56701363e+07 1.19e-09 1.51e-08 1.77e-04 53s
83 1.56702865e+07 1.56701515e+07 9.92e-10 1.89e-08 1.44e-04 53s
Barrier solved model in 83 iterations and 53.30 seconds (70.83 work units)
Optimal objective 1.56702865e+07
Root crossover log...
289922 DPushes remaining with DInf 0.0000000e+00 54s
109047 DPushes remaining with DInf 0.0000000e+00 55s
50665 DPushes remaining with DInf 0.0000000e+00 60s
31296 DPushes remaining with DInf 0.0000000e+00 65s
22729 DPushes remaining with DInf 0.0000000e+00 70s
16833 DPushes remaining with DInf 0.0000000e+00 75s
11731 DPushes remaining with DInf 0.0000000e+00 80s
6988 DPushes remaining with DInf 0.0000000e+00 85s
4159 DPushes remaining with DInf 0.0000000e+00 90s
2446 DPushes remaining with DInf 0.0000000e+00 96s
1078 DPushes remaining with DInf 0.0000000e+00 101s
0 DPushes remaining with DInf 0.0000000e+00 105s
233356 PPushes remaining with PInf 0.0000000e+00 106s
219409 PPushes remaining with PInf 4.9318810e+02 111s
213033 PPushes remaining with PInf 6.2447763e+02 120s
209124 PPushes remaining with PInf 1.3188631e+03 125s
202863 PPushes remaining with PInf 1.1861263e+03 131s
199660 PPushes remaining with PInf 1.1157626e+03 136s
197587 PPushes remaining with PInf 1.0854847e+03 140s
194622 PPushes remaining with PInf 1.0322176e+03 146s
191968 PPushes remaining with PInf 9.9719985e+02 151s
189441 PPushes remaining with PInf 9.5104292e+02 155s
186704 PPushes remaining with PInf 9.1871093e+02 160s
181121 PPushes remaining with PInf 8.5923959e+02 166s
175145 PPushes remaining with PInf 7.7262920e+02 170s
170036 PPushes remaining with PInf 7.1404355e+02 175s
165674 PPushes remaining with PInf 7.2931934e+02 182s
163306 PPushes remaining with PInf 7.3416611e+02 185s
157516 PPushes remaining with PInf 7.4153455e+02 193s
154411 PPushes remaining with PInf 7.4075728e+02 197s
151396 PPushes remaining with PInf 7.3995272e+02 203s
149047 PPushes remaining with PInf 7.3693244e+02 206s
145857 PPushes remaining with PInf 7.3254112e+02 211s
142389 PPushes remaining with PInf 7.2798761e+02 216s
139641 PPushes remaining with PInf 7.2012707e+02 221s
135930 PPushes remaining with PInf 7.1425800e+02 226s
133113 PPushes remaining with PInf 7.0634890e+02 230s
128523 PPushes remaining with PInf 6.9074788e+02 236s
124038 PPushes remaining with PInf 6.4547817e+02 241s
120693 PPushes remaining with PInf 6.4342188e+02 246s
116509 PPushes remaining with PInf 6.3887933e+02 251s
111181 PPushes remaining with PInf 6.3143344e+02 256s
106532 PPushes remaining with PInf 6.2694858e+02 261s
101153 PPushes remaining with PInf 6.2410771e+02 266s
96577 PPushes remaining with PInf 6.2026267e+02 270s
90552 PPushes remaining with PInf 6.1333617e+02 275s
86446 PPushes remaining with PInf 6.1051739e+02 280s
81500 PPushes remaining with PInf 6.0765181e+02 286s
76577 PPushes remaining with PInf 6.0153367e+02 290s
72378 PPushes remaining with PInf 5.9035054e+02 295s
66555 PPushes remaining with PInf 5.8485501e+02 300s
62229 PPushes remaining with PInf 5.8094956e+02 306s
58298 PPushes remaining with PInf 5.7695588e+02 310s
54233 PPushes remaining with PInf 5.6882086e+02 316s
50337 PPushes remaining with PInf 5.2774804e+02 321s
47417 PPushes remaining with PInf 5.2023241e+02 325s
43941 PPushes remaining with PInf 5.0309019e+02 330s
40975 PPushes remaining with PInf 4.4671122e+02 335s
38095 PPushes remaining with PInf 4.3794963e+02 340s
35303 PPushes remaining with PInf 4.2981298e+02 346s
32133 PPushes remaining with PInf 4.1692782e+02 350s
28086 PPushes remaining with PInf 3.8791910e+02 355s
24930 PPushes remaining with PInf 3.8226892e+02 360s
22290 PPushes remaining with PInf 3.8945483e+02 367s
20402 PPushes remaining with PInf 3.9221916e+02 372s
17614 PPushes remaining with PInf 3.9300761e+02 379s
16742 PPushes remaining with PInf 3.9142854e+02 381s
14754 PPushes remaining with PInf 3.8861606e+02 386s
12243 PPushes remaining with PInf 3.8381019e+02 391s
9764 PPushes remaining with PInf 3.7527669e+02 395s
3511 PPushes remaining with PInf 3.4130835e+02 400s
625 PPushes remaining with PInf 3.0294425e+02 406s
0 PPushes remaining with PInf 2.4469127e+02 409s
Push phase complete: Pinf 2.4469127e+02, Dinf 1.9891851e+07 409s
Root simplex log...
Iteration Objective Primal Inf. Dual Inf. Time
406973 1.5670443e+07 0.000000e+00 1.989185e+07 409s
407273 1.5670439e+07 0.000000e+00 9.000927e+08 414s
407573 1.5670413e+07 0.000000e+00 2.144132e+06 418s
407843 1.5670408e+07 0.000000e+00 8.251496e+07 421s
408507 1.5670398e+07 0.000000e+00 3.005141e+07 426s
408999 1.5670390e+07 0.000000e+00 1.354998e+08 432s
409442 1.5670388e+07 0.000000e+00 3.082170e+08 438s
410204 1.5670385e+07 0.000000e+00 2.763904e+08 441s
410680 1.5670384e+07 0.000000e+00 1.643272e+08 446s
411284 1.5670379e+07 0.000000e+00 8.447037e+06 452s
411785 1.5670374e+07 0.000000e+00 3.476875e+07 458s
412045 1.5670372e+07 0.000000e+00 1.146246e+08 461s
412555 1.5670368e+07 0.000000e+00 1.068803e+06 467s
413185 1.5670365e+07 0.000000e+00 3.931845e+07 471s
413736 1.5670360e+07 0.000000e+00 3.539069e+05 477s
413986 1.5670358e+07 0.000000e+00 1.422661e+07 480s
414890 1.5670352e+07 0.000000e+00 1.272991e+09 487s
415205 1.5670349e+07 0.000000e+00 1.070492e+06 490s
416035 1.5670345e+07 0.000000e+00 9.757189e+06 497s
416276 1.5670343e+07 0.000000e+00 5.056554e+05 500s
417146 1.5670341e+07 0.000000e+00 1.076777e+06 507s
417759 1.5670337e+07 0.000000e+00 1.723745e+08 512s
418330 1.5670334e+07 0.000000e+00 4.749455e+07 517s
419064 1.5670329e+07 0.000000e+00 1.615244e+09 521s
419676 1.5670326e+07 0.000000e+00 1.194421e+07 527s
420226 1.5670325e+07 0.000000e+00 3.649527e+06 531s
420654 1.5670324e+07 0.000000e+00 6.636912e+08 536s
421213 1.5670319e+07 0.000000e+00 6.861410e+08 541s
421812 1.5670315e+07 0.000000e+00 1.195739e+07 546s
422376 1.5670311e+07 0.000000e+00 3.545374e+06 551s
422897 1.5670309e+07 0.000000e+00 2.785026e+05 556s
423377 1.5670308e+07 0.000000e+00 1.721927e+09 561s
423933 1.5670306e+07 0.000000e+00 2.014718e+08 566s
424474 1.5670303e+07 0.000000e+00 6.937949e+07 571s
424964 1.5670301e+07 0.000000e+00 1.761554e+07 576s
425595 1.5670299e+07 0.000000e+00 1.634699e+06 582s
426033 1.5670296e+07 0.000000e+00 1.057569e+08 587s
426263 1.5670295e+07 0.000000e+00 7.436607e+08 591s
426816 1.5670292e+07 0.000000e+00 5.812886e+06 596s
427344 1.5670289e+07 0.000000e+00 2.359078e+08 601s
428878 1.5670286e+07 0.000000e+00 1.106673e+08 606s
429479 1.5670284e+07 0.000000e+00 4.668859e+09 611s
430012 1.5670282e+07 0.000000e+00 3.225347e+10 615s
430592 1.5670280e+07 0.000000e+00 6.682109e+07 620s
431157 1.5670278e+07 0.000000e+00 3.555748e+08 625s
431678 1.5670275e+07 0.000000e+00 3.163694e+07 630s
432276 1.5670274e+07 0.000000e+00 3.440511e+06 639s
432543 1.5670273e+07 0.000000e+00 2.001449e+09 642s
433207 1.5670269e+07 0.000000e+00 1.723720e+09 646s
433735 1.5670266e+07 0.000000e+00 6.871671e+05 652s
434315 1.5670266e+07 0.000000e+00 7.603528e+08 657s
435023 1.5670262e+07 0.000000e+00 1.195688e+05 661s
435591 1.5670262e+07 0.000000e+00 1.630083e+09 666s
436153 1.5670258e+07 0.000000e+00 4.481444e+09 671s
436718 1.5670256e+07 0.000000e+00 5.408247e+05 676s
437327 1.5670252e+07 0.000000e+00 1.376216e+09 680s
437684 1.5670250e+07 0.000000e+00 4.846627e+09 685s
438066 1.5670249e+07 0.000000e+00 6.734276e+08 690s
438736 1.5670247e+07 0.000000e+00 7.679679e+08 697s
439340 1.5670246e+07 0.000000e+00 4.829977e+09 702s
439937 1.5670244e+07 0.000000e+00 1.271766e+05 707s
440466 1.5670243e+07 0.000000e+00 8.364777e+07 712s
441030 1.5670242e+07 0.000000e+00 3.200614e+06 717s
441382 1.5670240e+07 0.000000e+00 1.404032e+10 721s
441988 1.5670238e+07 0.000000e+00 3.008580e+07 726s
442654 1.5670233e+07 0.000000e+00 3.610549e+08 731s
443642 1.5670231e+07 0.000000e+00 1.349530e+07 737s
444130 1.5670230e+07 0.000000e+00 6.135884e+06 742s
444555 1.5670230e+07 0.000000e+00 2.824208e+07 746s
445126 1.5670229e+07 0.000000e+00 4.060344e+06 751s
445816 1.5670228e+07 0.000000e+00 2.571222e+05 757s
446358 1.5670228e+07 0.000000e+00 2.698632e+09 762s
447021 1.5670227e+07 0.000000e+00 3.859969e+08 767s
447403 1.5670226e+07 0.000000e+00 6.650078e+08 770s
448239 1.5670224e+07 0.000000e+00 5.722165e+06 777s
448793 1.5670223e+07 0.000000e+00 1.811210e+08 782s
449407 1.5670222e+07 0.000000e+00 7.468153e+07 787s
449933 1.5670221e+07 0.000000e+00 1.523472e+07 792s
450393 1.5670220e+07 0.000000e+00 9.406458e+06 797s
450963 1.5670220e+07 0.000000e+00 9.543323e+07 801s
451315 1.5671580e+07 2.100176e-01 8.187238e+10 807s
451612 1.5670221e+07 3.928083e-02 4.162745e+10 813s
451827 1.5670222e+07 3.726279e-02 7.469254e+13 817s
452043 1.5671359e+07 3.437121e-01 3.643022e+13 821s
452449 1.5669795e+07 1.324255e+01 2.211822e+15 829s
452719 1.5668961e+07 2.007211e+00 1.903570e+13 833s
453072 1.5668963e+07 7.486056e-01 7.060987e+11 837s
453311 1.5860103e+07 2.007527e+01 3.009918e+13 841s
453550 1.5707311e+07 4.579646e+00 3.055259e+12 845s
453885 1.5707081e+07 2.545215e+00 1.301528e+13 850s
454380 9.2645539e+06 3.184581e+00 4.572156e+13 857s
454700 9.2658179e+06 3.451193e+00 2.134652e+11 863s
455215 9.2748914e+06 6.028007e+00 1.254772e+15 870s
455586 9.2731400e+06 5.206038e+00 1.054190e+15 872s
455831 9.2713382e+06 4.354042e+00 1.055655e+15 877s
456051 9.2713382e+06 4.354042e+00 1.055655e+15 882s
......
..... then I gets really long till....
.......
15777521 1.5642779e+07 3.643927e+07 0.000000e+00 324862s
15777711 1.5642779e+07 4.060067e+07 0.000000e+00 324865s
15778041 1.5642780e+07 6.955585e+07 0.000000e+00 324873s
15778221 1.5642780e+07 3.631021e+07 0.000000e+00 324877s
15778391 1.5642781e+07 1.210310e+07 0.000000e+00 324880s
15778721 1.5642781e+07 2.616904e+07 0.000000e+00 324888s
15778901 1.5642781e+07 1.358092e+08 0.000000e+00 324892s
15779081 1.5642782e+07 1.643986e+08 0.000000e+00 324896s
15779421 1.5642782e+07 2.911130e+07 0.000000e+00 324903s
15779601 1.5642783e+07 2.100722e+07 0.000000e+00 324906s
15779761 1.5642783e+07 1.549518e+07 0.000000e+00 324910s
15780111 1.5642783e+07 3.452569e+07 0.000000e+00 324918s
15780271 1.5642784e+07 3.895487e+07 0.000000e+00 324921s
15780431 1.5642786e+07 2.720486e+07 0.000000e+00 324925s
15780761 1.5642788e+07 3.765599e+08 0.000000e+00 324933s
15780921 1.5642790e+07 1.068326e+08 0.000000e+00 324936s
15781241 1.5642793e+07 1.201946e+08 0.000000e+00 324943s
15781401 1.5642793e+07 7.040132e+07 0.000000e+00 324947s
15781561 1.5642794e+07 3.616203e+07 0.000000e+00 324950s
15781931 1.5642794e+07 6.472747e+07 0.000000e+00 324958s
15782091 1.5642795e+07 1.443634e+07 0.000000e+00 324961s
15782421 1.5642797e+07 9.141539e+08 0.000000e+00 324969s
15782581 1.5642797e+07 1.223707e+08 0.000000e+00 324972s
15782741 1.5642797e+07 3.661129e+07 0.000000e+00 324975s
15783081 1.5642798e+07 1.114481e+08 0.000000e+00 324983s
15783261 1.5642798e+07 6.175741e+06 0.000000e+00 324986s
15783591 1.5642799e+07 4.865420e+07 0.000000e+00 324993s
15783761 1.5642799e+07 1.905761e+07 0.000000e+00 324998s
15783911 1.5642800e+07 1.819727e+07 0.000000e+00 325002s
15784091 1.5642800e+07 6.836315e+06 0.000000e+00 325006s
15784441 1.5642800e+07 9.563325e+06 0.000000e+00 325014s
15784611 1.5642801e+07 8.119541e+06 0.000000e+00 325017s
15784811 1.5642801e+07 6.950243e+06 0.000000e+00 325021s
15785151 1.5642801e+07 6.801837e+06 0.000000e+00 325028s
15785321 1.5642802e+07 1.350657e+07 0.000000e+00 325032s
15785521 1.5642802e+07 1.941239e+07 0.000000e+00 325035s
15785881 1.5642802e+07 6.184655e+06 0.000000e+00 325043s
15786061 1.5642802e+07 4.325821e+07 0.000000e+00 325046s
15786431 1.5642803e+07 6.010692e+06 0.000000e+00 325053s
15786591 1.5642803e+07 2.021246e+07 0.000000e+00 325057s
15786751 1.5642804e+07 3.296528e+07 0.000000e+00 325061s
15787081 1.5642804e+07 1.134112e+07 0.000000e+00 325068s
15787241 1.5642804e+07 1.961174e+07 0.000000e+00 325071s
15787561 1.5642804e+07 6.939146e+06 0.000000e+00 325078s
15787721 1.5642804e+07 1.122514e+07 0.000000e+00 325082s
15787881 1.5642805e+07 3.031590e+07 0.000000e+00 325086s
Last time after 10 days more it got out. maybe you had the same problem or now what is going on here.
Thank you for your help.
Best,
Patrick
-
Hi Patrick,
without knowledge about the model itself, I cannot give you specific guidance.
Nonetheless some things I would try come below:
1) Update Gurobi to v10 - you seem to be using v. 9.5.1.
2) Read Gurobi guide for numerical issues.
3) The range of coefficients of your model is huge. Perhaps you could reformulate it to make this range smaller? This will most likely help with the numerics too. You can read more here.
4) In my opinion, setting Crossover to 0 in your case won't help - you are solving a MIP and hence you need a basic solution as a start for the B&B. With Crossover set to 0, interior solution computed by barrier is returned. Read more here.
5) It's not obvious that increasing the number of threads will make your progress faster - read here, here and here.
All in all, the common theme in all these points are numerics of the model. You should perhaps start with these. A good first step would be to work with the coefficient ranges of your model (see point 3).
Hope these thoughts will be of some use to you.
Perhaps someone from Gurobi team can comment further?
Best regards
Jonasz1 -
Hi Patrick!
It seems like the simplex does not converge to a solution. As Jonasz already noted, this is most likely a numerical issue.
You could try to avoid basic solutions altogether by setting the parameter NodeMethod to 2 and also use barrier for the node relaxations - this will lead to longer node LP solving times but at least there is hope to start the tree search at all.
Another thing to try is the NoRel Heuristic (via NoRelHeurTime) to find a feasible solution at least.
Cheers,
Matthias0 -
Dear Jonasz and Matthias,
thank you so much for your help.
Best,
Patrick
0
Please sign in to leave a comment.
Comments
3 comments