Gurobi gets stuck
OngoingHello everyone,
This is my first post, so if I am doing something incorrectly please tell me.
About the issue I am having is that gurobi is taking to long, in my experience tunning gurobi correctly can beat cplex by orders of magnitude in computing time.
Any suggestions in what can I do to improve computing time, I leave the log snippet at the end.
Thanks.
Presolve removed 1216 rows and 2441 columns
Presolve time: 0.12s
Presolved: 3333 rows, 2823 columns, 11294 nonzeros
Presolved model has 1178 SOS constraint(s)
Variable types: 1645 continuous, 1178 integer (1178 binary)
Root relaxation presolve removed 3333 rows and 2823 columns
Root relaxation presolve: All rows and columns removed
Extra simplex iterations after uncrush: 115
Root relaxation: objective 0.000000e+00, 115 iterations, 0.02 seconds (0.00 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.00000 0 277 - 0.00000 - - 0s
0 0 0.00000 0 277 - 0.00000 - - 0s
H 0 0 2.0000000 0.00000 100% - 0s
0 0 0.00000 0 161 2.00000 0.00000 100% - 0s
0 0 0.00000 0 161 2.00000 0.00000 100% - 0s
0 2 0.00000 0 161 2.00000 0.00000 100% - 0s
1273 315 0.00000 174 6 2.00000 0.00000 100% 192 5s
8575 239 1.00000 79 29 2.00000 1.00000 50.0% 115 10s
17149 148 1.00000 176 5 2.00000 1.00000 50.0% 105 15s
20925 262 1.00000 210 2 2.00000 1.00000 50.0% 114 20s
29119 199 1.00000 92 29 2.00000 1.00000 50.0% 117 25s
40255 96 1.00000 149 7 2.00000 1.00000 50.0% 114 30s
Optimal solution found at node 45785 - now completing solution pool...
Nodes | Current Node | Pool Obj. Bounds | Work
| | Worst |
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
45785 18 cutoff 208 - 2.00000 - 105 31s
Explored 53829 nodes (4794951 simplex iterations) in 32.41 seconds (37.43 work units)
Thread count was 16 (of 16 available processors)
Solution count 50: 2 2 2 ... 2
Optimal solution found (tolerance 1.00e-04)
Best objective 2.000000000000e+00, best bound 2.000000000000e+00, gap 0.0000%
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (win64)
CPU model: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, instruction set [SSE2|AVX|AVX2]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads
Optimize a model with 4599 rows, 5264 columns and 18215 nonzeros
Model fingerprint: 0x17d735a5
Model has 3596 general constraints
Variable types: 3466 continuous, 1798 integer (1798 binary)
Coefficient statistics:
Matrix range [6e-05, 6e+01]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e-03, 2e+00]
GenCon rhs range [1e+00, 1e+00]
GenCon coe range [1e+00, 1e+00]
MIP start from previous solve did not produce a new incumbent solution
MIP start from previous solve violates constraint zp_4710-zp_4711-zp_4785_MultipleSol by 1.000000000
Presolve removed 1417 rows and 2594 columns
Presolve time: 0.18s
Presolved: 3182 rows, 2670 columns, 10870 nonzeros
Presolved model has 1104 SOS constraint(s)
Variable types: 1566 continuous, 1104 integer (1104 binary)
Root relaxation presolve removed 3182 rows and 2670 columns
Root relaxation presolve: All rows and columns removed
Extra simplex iterations after uncrush: 242
Root relaxation: objective 0.000000e+00, 242 iterations, 0.01 seconds (0.01 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.00000 0 245 - 0.00000 - - 0s
0 0 0.00000 0 245 - 0.00000 - - 0s
H 0 0 5.0000000 0.00000 100% - 0s
0 0 0.00000 0 199 5.00000 0.00000 100% - 0s
0 0 0.00000 0 199 5.00000 0.00000 100% - 0s
0 2 0.00000 0 199 5.00000 0.00000 100% - 0s
H 90 90 3.0000000 0.00000 100% 23.7 0s
1360 1220 0.00000 134 4 3.00000 0.00000 100% 62.8 5s
3221 1698 0.00000 117 23 3.00000 0.00000 100% 74.2 10s
14479 12201 1.00000 128 5 3.00000 1.00000 66.7% 29.0 15s
25804 19061 infeasible 105 3.00000 2.00000 33.3% 31.3 20s
33295 18821 infeasible 175 3.00000 2.00000 33.3% 41.6 25s
44655 18438 infeasible 180 3.00000 2.00000 33.3% 49.4 32s
51629 18338 infeasible 148 3.00000 2.00000 33.3% 51.2 36s
57163 18176 infeasible 149 3.00000 2.00000 33.3% 55.1 40s
64973 17913 infeasible 91 3.00000 2.00000 33.3% 56.9 46s
73852 17639 2.00000 183 2 3.00000 2.00000 33.3% 57.1 51s
81546 17407 2.00000 103 22 3.00000 2.00000 33.3% 57.5 55s
88682 17160 2.00000 131 4 3.00000 2.00000 33.3% 58.0 61s
97239 16946 infeasible 169 3.00000 2.00000 33.3% 57.7 65s
105165 16704 infeasible 151 3.00000 2.00000 33.3% 57.5 70s
112511 16441 2.00000 151 6 3.00000 2.00000 33.3% 57.2 75s
127388 16015 2.00000 195 2 3.00000 2.00000 33.3% 57.3 84s
134822 15859 2.00000 182 11 3.00000 2.00000 33.3% 57.4 88s
141596 15707 infeasible 177 3.00000 2.00000 33.3% 57.6 91s
147748 15493 2.00000 152 5 3.00000 2.00000 33.3% 58.3 96s
155740 15240 2.00000 130 19 3.00000 2.00000 33.3% 58.5 101s
163631 15062 2.00000 130 11 3.00000 2.00000 33.3% 58.4 105s
169863 14810 2.00000 136 16 3.00000 2.00000 33.3% 58.4 110s
178019 14574 infeasible 185 3.00000 2.00000 33.3% 58.4 115s
185003 14295 2.00000 193 6 3.00000 2.00000 33.3% 58.5 120s
199748 13789 infeasible 180 3.00000 2.00000 33.3% 58.8 130s
209216 13547 2.00000 165 3 3.00000 2.00000 33.3% 58.4 135s
215952 13229 2.00000 133 17 3.00000 2.00000 33.3% 58.4 141s
225332 13021 infeasible 156 3.00000 2.00000 33.3% 57.9 145s
234886 12752 2.00000 122 22 3.00000 2.00000 33.3% 57.8 150s
247181 12324 2.00000 144 10 3.00000 2.00000 33.3% 57.6 157s
253781 12163 2.00000 165 3 3.00000 2.00000 33.3% 57.6 161s
259868 11952 2.00000 189 5 3.00000 2.00000 33.3% 57.9 165s
274435 11564 2.00000 126 16 3.00000 2.00000 33.3% 58.0 174s
282217 11355 infeasible 181 3.00000 2.00000 33.3% 58.0 178s
289698 11175 infeasible 185 3.00000 2.00000 33.3% 58.1 182s
295846 10958 2.00000 148 8 3.00000 2.00000 33.3% 58.2 186s
302885 10738 infeasible 169 3.00000 2.00000 33.3% 58.2 192s
311145 10514 2.00000 163 9 3.00000 2.00000 33.3% 58.2 197s
319773 10341 infeasible 132 3.00000 2.00000 33.3% 58.1 201s
326002 10181 2.00000 124 17 3.00000 2.00000 33.3% 58.3 205s
340256 9861 2.00000 168 2 3.00000 2.00000 33.3% 58.5 214s
347776 9703 2.00000 147 9 3.00000 2.00000 33.3% 58.5 218s
354014 9540 infeasible 179 3.00000 2.00000 33.3% 58.9 222s
361963 9345 infeasible 119 3.00000 2.00000 33.3% 59.0 227s
369970 9113 2.00000 182 3 3.00000 2.00000 33.3% 58.9 232s
378096 8970 infeasible 114 3.00000 2.00000 33.3% 58.8 236s
384867 8831 2.00000 97 18 3.00000 2.00000 33.3% 58.9 241s
395170 8702 2.00000 147 5 3.00000 2.00000 33.3% 59.1 245s
405672 8383 infeasible 176 3.00000 2.00000 33.3% 59.3 254s
412798 8231 2.00000 128 5 3.00000 2.00000 33.3% 59.4 259s
420070 8076 infeasible 33 3.00000 2.00000 33.3% 59.5 263s
427019 7919 infeasible 78 3.00000 2.00000 33.3% 59.7 267s
434766 7732 infeasible 89 3.00000 2.00000 33.3% 59.9 272s
442367 7526 2.00000 168 11 3.00000 2.00000 33.3% 59.9 277s
450261 7366 infeasible 161 3.00000 2.00000 33.3% 60.0 281s
456691 7234 infeasible 146 3.00000 2.00000 33.3% 60.2 285s
463531 7147 infeasible 105 3.00000 2.00000 33.3% 60.4 290s
469196 7014 2.00000 178 1 3.00000 2.00000 33.3% 60.6 295s
476895 6868 2.00000 133 11 3.00000 2.00000 33.3% 60.6 300s
485125 6738 2.00000 113 20 3.00000 2.00000 33.3% 60.8 305s
499585 6460 2.00000 169 4 3.00000 2.00000 33.3% 61.1 314s
507545 6378 infeasible 158 3.00000 2.00000 33.3% 61.2 318s
513807 6293 2.00000 27 106 3.00000 2.00000 33.3% 61.4 322s
520626 6184 2.00000 101 22 3.00000 2.00000 33.3% 61.7 327s
528385 6067 infeasible 82 3.00000 2.00000 33.3% 61.9 331s
535278 5937 infeasible 101 3.00000 2.00000 33.3% 62.1 336s
542514 5869 infeasible 170 3.00000 2.00000 33.3% 62.3 340s
548176 5722 infeasible 32 3.00000 2.00000 33.3% 62.6 345s
556283 5611 infeasible 114 3.00000 2.00000 33.3% 62.6 350s
564006 5477 infeasible 124 3.00000 2.00000 33.3% 62.8 355s
572340 5368 2.00000 97 17 3.00000 2.00000 33.3% 62.9 360s
587200 5094 2.00000 155 22 3.00000 2.00000 33.3% 63.0 369s
594181 4983 2.00000 137 6 3.00000 2.00000 33.3% 63.0 372s
600624 4847 infeasible 139 3.00000 2.00000 33.3% 63.0 376s
607410 4756 infeasible 101 3.00000 2.00000 33.3% 63.0 380s
619610 4577 2.00000 109 20 3.00000 2.00000 33.3% 63.1 387s
625020 4452 2.00000 170 6 3.00000 2.00000 33.3% 63.1 391s
637640 4269 infeasible 179 3.00000 2.00000 33.3% 63.2 397s
642714 4182 2.00000 99 15 3.00000 2.00000 33.3% 63.2 400s
654567 3959 infeasible 95 3.00000 2.00000 33.3% 63.4 407s
660966 3887 infeasible 25 3.00000 2.00000 33.3% 63.3 410s
671535 3696 2.00000 75 72 3.00000 2.00000 33.3% 63.4 416s
681033 3560 2.00000 185 2 3.00000 2.00000 33.3% 63.5 422s
686197 3470 infeasible 110 3.00000 2.00000 33.3% 63.5 425s
696519 3278 infeasible 120 3.00000 2.00000 33.3% 63.6 431s
706254 3111 2.00000 103 16 3.00000 2.00000 33.3% 63.6 436s
714251 2945 2.00000 65 93 3.00000 2.00000 33.3% 63.7 441s
724059 2792 infeasible 139 3.00000 2.00000 33.3% 63.7 446s
732185 2661 2.00000 151 7 3.00000 2.00000 33.3% 63.8 450s
741064 2500 infeasible 155 3.00000 2.00000 33.3% 63.8 455s
752930 2310 2.00000 153 3 3.00000 2.00000 33.3% 63.8 461s
760591 2173 2.00000 86 25 3.00000 2.00000 33.3% 63.9 465s
771785 1969 2.00000 107 28 3.00000 2.00000 33.3% 63.9 471s
781617 1799 2.00000 89 34 3.00000 2.00000 33.3% 63.9 476s
791457 1615 2.00000 167 2 3.00000 2.00000 33.3% 63.9 481s
801068 1471 infeasible 109 3.00000 2.00000 33.3% 63.9 486s
809655 1316 2.00000 171 13 3.00000 2.00000 33.3% 63.9 490s
820494 1183 infeasible 100 3.00000 2.00000 33.3% 64.0 495s
830523 1013 infeasible 132 3.00000 2.00000 33.3% 64.0 500s
840552 827 infeasible 23 3.00000 2.00000 33.3% 64.0 505s
851454 687 2.00000 100 16 3.00000 2.00000 33.3% 64.0 510s
862010 525 infeasible 119 3.00000 2.00000 33.3% 64.1 515s
871623 340 infeasible 156 3.00000 2.00000 33.3% 64.0 520s
883311 185 2.00000 146 6 3.00000 2.00000 33.3% 64.0 525s
Optimal solution found at node 891732 - now completing solution pool...
Nodes | Current Node | Pool Obj. Bounds | Work
| | Worst |
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
891732 136 - 171 - 3.00000 - 63.5 528s
899941 132 - 170 - 3.00000 - 62.9 530s
928155 98 cutoff 452 - 3.00000 - 61.0 535s
Explored 951343 nodes (56664684 simplex iterations) in 538.13 seconds (341.47 work units)
Thread count was 16 (of 16 available processors)
Solution count 197: 3 3 3 ... 3
Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap 0.0000%
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (win64)
CPU model: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, instruction set [SSE2|AVX|AVX2]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads
Optimize a model with 4796 rows, 5264 columns and 18832 nonzeros
Model fingerprint: 0x1a563e70
Model has 3596 general constraints
Variable types: 3466 continuous, 1798 integer (1798 binary)
Coefficient statistics:
Matrix range [6e-05, 6e+01]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e-03, 4e+00]
GenCon rhs range [1e+00, 1e+00]
GenCon coe range [1e+00, 1e+00]
MIP start from previous solve did not produce a new incumbent solution
MIP start from previous solve violates constraint zp_3793-zp_3795-zp_3798-zp_4762_MultipleSol by 1.000000000
Presolve removed 1465 rows and 2630 columns
Presolve time: 0.17s
Presolved: 3331 rows, 2634 columns, 11337 nonzeros
Presolved model has 1086 SOS constraint(s)
Variable types: 1548 continuous, 1086 integer (1086 binary)
Root relaxation presolve removed 3331 rows and 2634 columns
Root relaxation presolve: All rows and columns removed
Extra simplex iterations after uncrush: 232
Root relaxation: objective 0.000000e+00, 232 iterations, 0.02 seconds (0.01 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.00000 0 248 - 0.00000 - - 0s
0 0 0.00000 0 248 - 0.00000 - - 0s
0 0 0.00000 0 175 - 0.00000 - - 0s
0 0 0.00000 0 175 - 0.00000 - - 0s
H 0 0 4.0000000 0.00000 100% - 0s
0 2 0.00000 0 174 4.00000 0.00000 100% - 0s
1498 1350 2.00000 65 0 4.00000 0.00000 100% 39.9 5s
2880 2180 0.00000 101 11 4.00000 0.00000 100% 42.8 10s
5523 4527 1.00000 110 16 4.00000 1.00000 75.0% 37.2 15s
17369 16080 1.00000 188 2 4.00000 1.00000 75.0% 31.1 20s
20072 26928 2.00000 193 4 4.00000 2.00000 50.0% 30.4 28s
29807 33884 2.00000 154 2 4.00000 2.00000 50.0% 31.2 35s
37451 43053 2.00000 156 10 4.00000 2.00000 50.0% 32.7 44s
42029 43053 3.00000 120 7 4.00000 2.00000 50.0% 32.8 45s
47478 53304 2.00000 143 19 4.00000 2.00000 50.0% 33.3 56s
58689 62776 2.00000 111 14 4.00000 2.00000 50.0% 32.6 68s
69189 69894 3.00000 148 3 4.00000 2.00000 50.0% 32.2 76s
77131 78790 2.00000 160 9 4.00000 2.00000 50.0% 32.3 86s
87057 86958 3.00000 110 10 4.00000 2.00000 50.0% 32.5 94s
88160 86958 2.00000 162 2 4.00000 2.00000 50.0% 32.5 95s
95999 96347 2.00000 172 2 4.00000 2.00000 50.0% 32.4 105s
106386 103611 3.00000 147 4 4.00000 2.00000 50.0% 32.3 114s
114536 112033 3.00000 151 15 4.00000 2.00000 50.0% 32.7 123s
123774 118670 3.00000 143 13 4.00000 2.00000 50.0% 32.7 131s
131185 129441 2.00000 173 2 4.00000 2.00000 50.0% 32.9 145s
143010 138431 2.00000 173 2 4.00000 2.00000 50.0% 32.8 157s
152984 145664 3.00000 156 13 4.00000 2.00000 50.0% 32.9 165s
160993 155057 2.00000 107 27 4.00000 2.00000 50.0% 33.1 176s
171306 162906 3.00000 81 55 4.00000 2.00000 50.0% 33.2 186s
179853 170777 2.00000 98 9 4.00000 2.00000 50.0% 33.1 195s
188558 180229 2.00000 102 15 4.00000 2.00000 50.0% 33.3 207s
198982 188356 infeasible 176 4.00000 2.00000 50.0% 33.3 217s
207851 196937 3.00000 109 19 4.00000 2.00000 50.0% 33.3 228s
217528 206216 infeasible 44 4.00000 2.00000 50.0% 33.6 240s
227679 212980 2.00000 120 24 4.00000 2.00000 50.0% 33.6 248s
235193 223284 3.00000 152 2 4.00000 2.00000 50.0% 33.7 261s
246551 230785 3.00000 115 19 4.00000 2.00000 50.0% 33.7 271s
254918 240173 2.00000 144 20 4.00000 2.00000 50.0% 33.7 283s
265334 249698 2.00000 156 3 4.00000 2.00000 50.0% 33.8 295s
275833 256270 2.00000 114 13 4.00000 2.00000 50.0% 33.8 304s
283107 266062 2.00000 179 10 4.00000 2.00000 50.0% 33.9 316s
293943 274909 3.00000 139 3 4.00000 2.00000 50.0% 33.9 328s
303666 282046 3.00000 151 6 4.00000 2.00000 50.0% 34.0 337s
311507 290228 3.00000 171 7 4.00000 2.00000 50.0% 34.1 347s
320471 300161 3.00000 97 12 4.00000 2.00000 50.0% 34.0 360s
331514 308130 3.00000 123 11 4.00000 2.00000 50.0% 34.1 371s
340295 316656 2.00000 155 2 4.00000 2.00000 50.0% 34.0 380s
349569 325336 3.00000 124 20 4.00000 2.00000 50.0% 34.0 391s
359163 333518 3.00000 167 2 4.00000 2.00000 50.0% 34.0 401s
368083 343249 3.00000 119 11 4.00000 2.00000 50.0% 34.0 413s
378990 351594 2.00000 130 22 4.00000 2.00000 50.0% 34.0 424s
388231 359030 3.00000 128 13 4.00000 2.00000 50.0% 34.0 433s
396375 367734 infeasible 48 4.00000 2.00000 50.0% 34.0 443s
405831 375167 2.00000 135 12 4.00000 2.00000 50.0% 34.0 452s
414038 382011 3.00000 108 8 4.00000 2.00000 50.0% 34.0 461s
421704 389923 3.00000 131 25 4.00000 2.00000 50.0% 34.0 470s
430556 397003 3.00000 92 30 4.00000 2.00000 50.0% 34.0 479s
438504 403112 3.00000 126 18 4.00000 2.00000 50.0% 34.0 486s
445221 409284 2.00000 157 2 4.00000 2.00000 50.0% 34.0 492s
452119 416535 3.00000 173 4 4.00000 2.00000 50.0% 34.0 501s
460084 422956 2.00000 173 6 4.00000 2.00000 50.0% 34.0 509s
467135 429575 2.00000 143 2 4.00000 2.00000 50.0% 34.0 516s
474570 436420 2.00000 142 6 4.00000 2.00000 50.0% 34.1 524s
482073 441623 2.00000 148 2 4.00000 2.00000 50.0% 34.1 530s
487886 447245 3.00000 134 7 4.00000 2.00000 50.0% 34.1 536s
494080 453824 2.00000 105 14 4.00000 2.00000 50.0% 34.1 543s
501263 458534 2.00000 140 14 4.00000 2.00000 50.0% 34.1 548s
506527 464149 2.00000 42 111 4.00000 2.00000 50.0% 34.1 554s
512784 470291 3.00000 154 2 4.00000 2.00000 50.0% 34.1 561s
519638 475483 2.00000 126 16 4.00000 2.00000 50.0% 34.1 566s
525346 480882 3.00000 148 7 4.00000 2.00000 50.0% 34.1 572s
531325 485786 3.00000 129 3 4.00000 2.00000 50.0% 34.1 577s
536685 490072 2.00000 180 10 4.00000 2.00000 50.0% 34.2 582s
541393 495252 3.00000 158 2 4.00000 2.00000 50.0% 34.1 587s
547153 500321 3.00000 136 9 4.00000 2.00000 50.0% 34.2 592s
552700 504169 2.00000 35 131 4.00000 2.00000 50.0% 34.2 596s
556944 509076 2.00000 82 43 4.00000 2.00000 50.0% 34.2 601s
562249 513131 2.00000 177 3 4.00000 2.00000 50.0% 34.2 606s
566832 516928 3.00000 121 17 4.00000 2.00000 50.0% 34.2 610s
571065 522433 3.00000 144 3 4.00000 2.00000 50.0% 34.3 615s
580045 529920 3.00000 158 2 4.00000 2.00000 50.0% 34.2 624s
585437 533698 2.00000 117 20 4.00000 2.00000 50.0% 34.2 629s
589651 538241 3.00000 131 15 4.00000 2.00000 50.0% 34.3 634s
594666 541839 2.00000 191 4 4.00000 2.00000 50.0% 34.3 638s
598708 545677 2.00000 113 14 4.00000 2.00000 50.0% 34.3 642s
603026 549833 3.00000 168 3 4.00000 2.00000 50.0% 34.3 647s
607652 553879 3.00000 154 2 4.00000 2.00000 50.0% 34.3 651s
615089 559937 3.00000 145 2 4.00000 2.00000 50.0% 34.3 657s
618964 563673 2.00000 127 19 4.00000 2.00000 50.0% 34.3 661s
626101 570311 3.00000 161 3 4.00000 2.00000 50.0% 34.3 668s
630372 572858 2.00000 160 2 4.00000 2.00000 50.0% 34.3 672s
633231 576213 3.00000 171 5 4.00000 2.00000 50.0% 34.3 675s
640041 582191 2.00000 102 15 4.00000 2.00000 50.0% 34.3 681s
646867 587768 2.00000 120 8 4.00000 2.00000 50.0% 34.3 687s
649637 590510 2.00000 130 5 4.00000 2.00000 50.0% 34.3 690s
656296 596377 2.00000 129 3 4.00000 2.00000 50.0% 34.3 696s
662345 601286 2.00000 122 16 4.00000 2.00000 50.0% 34.3 700s
667580 606372 3.00000 169 8 4.00000 2.00000 50.0% 34.3 705s
675142 612546 2.00000 164 2 4.00000 2.00000 50.0% 34.3 711s
680214 617415 2.00000 156 14 4.00000 2.00000 50.0% 34.3 716s
685201 621993 2.00000 151 4 4.00000 2.00000 50.0% 34.3 720s
692138 628484 2.00000 119 14 4.00000 2.00000 50.0% 34.3 726s
698720 634400 3.00000 142 21 4.00000 2.00000 50.0% 34.3 731s
705031 639947 3.00000 91 24 4.00000 2.00000 50.0% 34.3 736s
711061 644668 2.00000 178 10 4.00000 2.00000 50.0% 34.2 740s
717685 650691 3.00000 168 2 4.00000 2.00000 50.0% 34.2 745s
722770 652459 3.00000 170 2 4.00000 3.00000 25.0% 34.3 753s
727890 652245 3.00000 166 6 4.00000 3.00000 25.0% 34.8 760s
734538 651886 3.00000 191 2 4.00000 3.00000 25.0% 35.4 770s
742887 651569 infeasible 136 4.00000 3.00000 25.0% 35.8 780s
751294 651225 infeasible 116 4.00000 3.00000 25.0% 36.5 792s
760214 650834 infeasible 181 4.00000 3.00000 25.0% 37.1 804s
769389 650617 3.00000 178 10 4.00000 3.00000 25.0% 37.8 813s
776996 650265 3.00000 122 13 4.00000 3.00000 25.0% 38.7 826s
787158 649819 infeasible 196 4.00000 3.00000 25.0% 39.5 839s
796370 649467 infeasible 166 4.00000 3.00000 25.0% 40.2 851s
805454 649056 3.00000 72 90 4.00000 3.00000 25.0% 41.1 865s
815319 648535 infeasible 117 4.00000 3.00000 25.0% 41.6 879s
825948 648024 infeasible 152 4.00000 3.00000 25.0% 42.3 894s
836335 647442 infeasible 156 4.00000 3.00000 25.0% 42.9 909s
847415 646966 3.00000 149 13 4.00000 3.00000 25.0% 43.5 918s
854515 646517 3.00000 176 10 4.00000 3.00000 25.0% 44.0 930s
863958 646093 3.00000 131 16 4.00000 3.00000 25.0% 44.7 942s
872566 645639 3.00000 166 4 4.00000 3.00000 25.0% 45.3 957s
883580 645168 3.00000 143 4 4.00000 3.00000 25.0% 46.0 971s
893879 644671 infeasible 163 4.00000 3.00000 25.0% 46.6 984s
900756 644671 3.00000 147 20 4.00000 3.00000 25.0% 46.9 985s
903782 644189 3.00000 166 5 4.00000 3.00000 25.0% 47.1 998s
914076 643724 3.00000 156 3 4.00000 3.00000 25.0% 47.6 1012s
924171 643251 infeasible 158 4.00000 3.00000 25.0% 48.1 1024s
933286 642817 3.00000 134 6 4.00000 3.00000 25.0% 48.6 1036s
942942 642355 3.00000 169 10 4.00000 3.00000 25.0% 49.0 1049s
953046 641995 3.00000 146 3 4.00000 3.00000 25.0% 49.5 1060s
960708 641554 3.00000 92 26 4.00000 3.00000 25.0% 50.1 1074s
971409 641182 infeasible 161 4.00000 3.00000 25.0% 50.5 1085s
979517 640787 3.00000 114 4 4.00000 3.00000 25.0% 50.9 1100s
989854 640292 infeasible 185 4.00000 3.00000 25.0% 51.3 1115s
1000873 639812 3.00000 176 11 4.00000 3.00000 25.0% 51.8 1127s
1010053 639362 3.00000 152 7 4.00000 3.00000 25.0% 52.2 1139s
1011163 639362 3.00000 150 8 4.00000 3.00000 25.0% 52.3 1140s
1019507 638898 infeasible 137 4.00000 3.00000 25.0% 52.7 1152s
1028993 638527 infeasible 178 4.00000 3.00000 25.0% 53.1 1163s
1037028 638085 3.00000 103 17 4.00000 3.00000 25.0% 53.5 1178s
1048444 637704 infeasible 188 4.00000 3.00000 25.0% 53.9 1192s
1058439 637337 3.00000 102 10 4.00000 3.00000 25.0% 54.3 1204s
1067752 636925 3.00000 159 2 4.00000 3.00000 25.0% 54.7 1216s
1077256 636534 infeasible 192 4.00000 3.00000 25.0% 55.1 1229s
1086375 636166 3.00000 184 9 4.00000 3.00000 25.0% 55.5 1241s
1096287 635793 infeasible 119 4.00000 3.00000 25.0% 55.9 1255s
1105944 635484 infeasible 117 4.00000 3.00000 25.0% 56.1 1265s
1114343 635106 infeasible 89 4.00000 3.00000 25.0% 56.6 1280s
1125199 634779 3.00000 166 11 4.00000 3.00000 25.0% 56.9 1292s
1134000 634456 infeasible 125 4.00000 3.00000 25.0% 57.3 1305s
1143957 634154 infeasible 164 4.00000 3.00000 25.0% 57.7 1316s
1151895 633749 3.00000 168 2 4.00000 3.00000 25.0% 58.1 1333s
1163998 633357 infeasible 133 4.00000 3.00000 25.0% 58.5 1346s
1173980 632947 3.00000 138 4 4.00000 3.00000 25.0% 58.8 1359s
1183972 632484 infeasible 152 4.00000 3.00000 25.0% 59.1 1373s
1193799 632114 infeasible 180 4.00000 3.00000 25.0% 59.3 1386s
1203231 631768 infeasible 167 4.00000 3.00000 25.0% 59.6 1397s
1212531 631455 3.00000 131 14 4.00000 3.00000 25.0% 59.9 1407s
1220160 631129 3.00000 171 3 4.00000 3.00000 25.0% 60.2 1419s
1229172 630816 3.00000 152 8 4.00000 3.00000 25.0% 60.6 1432s
1238535 630529 3.00000 112 15 4.00000 3.00000 25.0% 60.7 1444s
1247419 630529 3.00000 142 4 4.00000 3.00000 25.0% 61.1 1445s
1248064 630237 3.00000 133 3 4.00000 3.00000 25.0% 61.1 1456s
1257442 629920 3.00000 145 4 4.00000 3.00000 25.0% 61.5 1470s
1267659 629638 3.00000 167 10 4.00000 3.00000 25.0% 61.8 1481s
1275917 629294 3.00000 130 19 4.00000 3.00000 25.0% 62.2 1495s
1286269 628976 3.00000 179 2 4.00000 3.00000 25.0% 62.5 1508s
1295597 628670 3.00000 166 3 4.00000 3.00000 25.0% 62.9 1521s
1305997 628441 infeasible 165 4.00000 3.00000 25.0% 63.2 1535s
1315950 628130 3.00000 155 6 4.00000 3.00000 25.0% 63.5 1547s
1325559 627869 3.00000 155 5 4.00000 3.00000 25.0% 63.9 1558s
1333442 627570 infeasible 102 4.00000 3.00000 25.0% 64.2 1570s
1343281 627194 3.00000 179 2 4.00000 3.00000 25.0% 64.5 1585s
1354267 626823 3.00000 188 10 4.00000 3.00000 25.0% 64.8 1599s
1364494 626504 3.00000 184 3 4.00000 3.00000 25.0% 65.1 1611s
1373573 626183 3.00000 122 22 4.00000 3.00000 25.0% 65.2 1624s
1382954 625921 infeasible 121 4.00000 3.00000 25.0% 65.5 1634s
1390758 625586 infeasible 170 4.00000 3.00000 25.0% 65.8 1648s
1401211 625191 3.00000 168 8 4.00000 3.00000 25.0% 66.0 1663s
1412564 624808 infeasible 138 4.00000 3.00000 25.0% 66.3 1676s
1421937 624493 infeasible 125 4.00000 3.00000 25.0% 66.5 1687s
1430262 624247 3.00000 101 22 4.00000 3.00000 25.0% 66.8 1698s
1438786 623962 infeasible 89 4.00000 3.00000 25.0% 67.1 1712s
1449041 623693 3.00000 162 17 4.00000 3.00000 25.0% 67.3 1724s
1457317 623693 3.00000 180 2 4.00000 3.00000 25.0% 67.5 1725s
1458622 623382 infeasible 186 4.00000 3.00000 25.0% 67.6 1739s
1469535 623124 infeasible 124 4.00000 3.00000 25.0% 67.8 1749s
1472151 623124 3.00000 122 4 4.00000 3.00000 25.0% 67.9 1750s
1477715 622807 3.00000 75 72 4.00000 3.00000 25.0% 68.1 1762s
1487616 622434 3.00000 155 3 4.00000 3.00000 25.0% 68.3 1777s
1498357 622166 3.00000 162 8 4.00000 3.00000 25.0% 68.5 1786s
1505279 621836 infeasible 159 4.00000 3.00000 25.0% 68.8 1800s
1515747 621539 3.00000 133 9 4.00000 3.00000 25.0% 68.9 1813s
1525428 621218 3.00000 158 3 4.00000 3.00000 25.0% 69.1 1827s
1535507 620906 infeasible 192 4.00000 3.00000 25.0% 69.4 1839s
1544957 620513 infeasible 177 4.00000 3.00000 25.0% 69.6 1853s
1555316 620103 infeasible 122 4.00000 3.00000 25.0% 69.8 1866s
1565078 619776 infeasible 196 4.00000 3.00000 25.0% 69.9 1879s
1574861 619421 3.00000 104 10 4.00000 3.00000 25.0% 70.1 1892s
1584456 619083 infeasible 145 4.00000 3.00000 25.0% 70.3 1904s
1593694 618751 infeasible 146 4.00000 3.00000 25.0% 70.3 1916s
1603296 618466 infeasible 108 4.00000 3.00000 25.0% 70.5 1927s
1611319 618187 3.00000 152 3 4.00000 3.00000 25.0% 70.8 1938s
1619898 617895 infeasible 178 4.00000 3.00000 25.0% 71.0 1951s
1630162 617556 3.00000 108 12 4.00000 3.00000 25.0% 71.3 1963s
1638773 617225 infeasible 156 4.00000 3.00000 25.0% 71.4 1977s
1649506 616944 3.00000 189 4 4.00000 3.00000 25.0% 71.6 1988s
1658157 616570 3.00000 82 38 4.00000 3.00000 25.0% 71.8 2003s
1668917 616258 infeasible 161 4.00000 3.00000 25.0% 72.0 2016s
1677607 615980 infeasible 124 4.00000 3.00000 25.0% 72.0 2027s
1686597 615712 3.00000 89 29 4.00000 3.00000 25.0% 72.3 2039s
1696049 615399 3.00000 128 18 4.00000 3.00000 25.0% 72.5 2053s
1706034 615097 infeasible 188 4.00000 3.00000 25.0% 72.7 2066s
1716276 614751 3.00000 122 8 4.00000 3.00000 25.0% 72.9 2082s
1726838 614479 3.00000 125 12 4.00000 3.00000 25.0% 73.0 2092s
1734652 614167 infeasible 169 4.00000 3.00000 25.0% 73.3 2104s
1741510 614167 3.00000 183 10 4.00000 3.00000 25.0% 73.4 2105s
1744522 613871 infeasible 180 4.00000 3.00000 25.0% 73.5 2117s
1753294 613554 3.00000 180 4 4.00000 3.00000 25.0% 73.7 2131s
1764077 613161 3.00000 136 9 4.00000 3.00000 25.0% 73.8 2144s
1773738 612762 infeasible 146 4.00000 3.00000 25.0% 74.0 2158s
1784791 612376 infeasible 117 4.00000 3.00000 25.0% 74.1 2171s
1794437 612115 infeasible 147 4.00000 3.00000 25.0% 74.2 2180s
1800762 611849 3.00000 180 4 4.00000 3.00000 25.0% 74.3 2193s
1810828 611580 infeasible 120 4.00000 3.00000 25.0% 74.4 2205s
1820409 611261 infeasible 170 4.00000 3.00000 25.0% 74.6 2219s
1829022 611261 3.00000 172 12 4.00000 3.00000 25.0% 74.7 2220s
1831274 610950 infeasible 140 4.00000 3.00000 25.0% 74.7 2231s
1840259 610622 3.00000 146 2 4.00000 3.00000 25.0% 74.9 2244s
1849791 610365 infeasible 161 4.00000 3.00000 25.0% 75.0 2254s
1857988 610031 infeasible 180 4.00000 3.00000 25.0% 75.3 2269s
1869248 609760 3.00000 160 7 4.00000 3.00000 25.0% 75.3 2280s
1877439 609447 infeasible 146 4.00000 3.00000 25.0% 75.4 2292s
1886950 609172 3.00000 150 16 4.00000 3.00000 25.0% 75.6 2304s
1896007 608821 3.00000 134 15 4.00000 3.00000 25.0% 75.8 2318s
1906432 608542 infeasible 134 4.00000 3.00000 25.0% 75.9 2329s
1914739 608225 3.00000 127 18 4.00000 3.00000 25.0% 76.1 2341s
1924804 607892 3.00000 186 6 4.00000 3.00000 25.0% 76.2 2356s
1935759 607568 3.00000 168 2 4.00000 3.00000 25.0% 76.3 2369s
1939603 607568 3.00000 130 15 4.00000 3.00000 25.0% 76.4 2370s
1944997 607261 3.00000 132 19 4.00000 3.00000 25.0% 76.4 2380s
1953410 606956 3.00000 172 11 4.00000 3.00000 25.0% 76.5 2392s
1962811 606629 infeasible 192 4.00000 3.00000 25.0% 76.6 2405s
1973226 606259 infeasible 138 4.00000 3.00000 25.0% 76.7 2419s
1983634 605897 3.00000 133 14 4.00000 3.00000 25.0% 76.8 2432s
1993262 605548 3.00000 137 5 4.00000 3.00000 25.0% 76.7 2444s
2002295 605225 3.00000 166 4 4.00000 3.00000 25.0% 76.8 2455s
2011034 604892 infeasible 157 4.00000 3.00000 25.0% 77.0 2468s
2021205 604593 infeasible 142 4.00000 3.00000 25.0% 77.1 2479s
2029642 604300 3.00000 114 18 4.00000 3.00000 25.0% 77.2 2491s
2039245 603951 3.00000 116 13 4.00000 3.00000 25.0% 77.3 2505s
2049242 603674 infeasible 151 4.00000 3.00000 25.0% 77.4 2515s
2057461 603427 3.00000 89 39 4.00000 3.00000 25.0% 77.6 2526s
2066178 603172 3.00000 78 65 4.00000 3.00000 25.0% 77.7 2539s
2075511 602862 infeasible 133 4.00000 3.00000 25.0% 77.9 2552s
2085659 602491 infeasible 181 4.00000 3.00000 25.0% 78.0 2566s
2095644 602139 infeasible 143 4.00000 3.00000 25.0% 78.1 2579s
2105642 601856 3.00000 132 5 4.00000 3.00000 25.0% 78.2 2589s
2113499 601561 infeasible 174 4.00000 3.00000 25.0% 78.3 2601s
2122760 601279 3.00000 123 14 4.00000 3.00000 25.0% 78.4 2613s
2131518 600996 3.00000 124 16 4.00000 3.00000 25.0% 78.5 2626s
2141485 600652 3.00000 100 4 4.00000 3.00000 25.0% 78.7 2639s
2146432 600652 3.00000 161 2 4.00000 3.00000 25.0% 78.7 2640s
2151457 600370 infeasible 170 4.00000 3.00000 25.0% 78.8 2651s
2159931 600077 3.00000 100 16 4.00000 3.00000 25.0% 78.9 2665s
2169790 599698 3.00000 149 7 4.00000 3.00000 25.0% 79.0 2680s
2180987 599414 3.00000 163 2 4.00000 3.00000 25.0% 79.1 2691s
2189065 599117 infeasible 149 4.00000 3.00000 25.0% 79.3 2704s
2199096 598880 infeasible 166 4.00000 3.00000 25.0% 79.4 2714s
2207397 598612 infeasible 85 4.00000 3.00000 25.0% 79.5 2728s
2217369 598289 3.00000 178 10 4.00000 3.00000 25.0% 79.5 2741s
2227778 598009 infeasible 176 4.00000 3.00000 25.0% 79.6 2754s
2236998 597739 infeasible 188 4.00000 3.00000 25.0% 79.7 2765s
2245778 597439 3.00000 121 22 4.00000 3.00000 25.0% 79.8 2776s
2254348 597119 infeasible 159 4.00000 3.00000 25.0% 79.9 2790s
2265462 596854 infeasible 194 4.00000 3.00000 25.0% 80.0 2801s
2273805 596517 3.00000 167 10 4.00000 3.00000 25.0% 80.1 2816s
2284448 596233 infeasible 132 4.00000 3.00000 25.0% 80.2 2827s
2293870 595932 3.00000 131 7 4.00000 3.00000 25.0% 80.2 2840s
2303495 595645 infeasible 179 4.00000 3.00000 25.0% 80.3 2852s
2312768 595426 3.00000 136 5 4.00000 3.00000 25.0% 80.4 2861s
2319999 595191 3.00000 86 47 4.00000 3.00000 25.0% 80.4 2874s
2329696 594882 infeasible 149 4.00000 3.00000 25.0% 80.6 2888s
2339889 594509 3.00000 164 4 4.00000 3.00000 25.0% 80.7 2902s
2350232 594224 3.00000 150 2 4.00000 3.00000 25.0% 80.7 2912s
2358317 593948 infeasible 122 4.00000 3.00000 25.0% 80.8 2924s
2367889 593574 infeasible 140 4.00000 3.00000 25.0% 80.9 2938s
2378155 593212 infeasible 136 4.00000 3.00000 25.0% 81.0 2951s
2387983 592900 3.00000 151 2 4.00000 3.00000 25.0% 81.1 2963s
2397017 592645 infeasible 111 4.00000 3.00000 25.0% 81.1 2973s
2405334 592369 infeasible 169 4.00000 3.00000 25.0% 81.3 2986s
2414914 592117 infeasible 171 4.00000 3.00000 25.0% 81.4 2997s
2423670 591761 infeasible 165 4.00000 3.00000 25.0% 81.5 3012s
2434536 591399 infeasible 153 4.00000 3.00000 25.0% 81.5 3024s
2443940 591073 3.00000 153 3 4.00000 3.00000 25.0% 81.6 3036s
2453178 590797 3.00000 171 7 4.00000 3.00000 25.0% 81.7 3047s
2461342 590411 infeasible 156 4.00000 3.00000 25.0% 81.8 3060s
2471690 590162 infeasible 177 4.00000 3.00000 25.0% 81.8 3072s
2481067 589919 3.00000 89 33 4.00000 3.00000 25.0% 81.9 3084s
2490260 589611 3.00000 123 3 4.00000 3.00000 25.0% 82.0 3097s
2500524 589320 infeasible 147 4.00000 3.00000 25.0% 82.1 3109s
2508795 589017 3.00000 144 6 4.00000 3.00000 25.0% 82.1 3122s
2518698 588717 infeasible 140 4.00000 3.00000 25.0% 82.1 3133s
2527452 588322 infeasible 175 4.00000 3.00000 25.0% 82.2 3147s
2538021 587993 infeasible 156 4.00000 3.00000 25.0% 82.3 3159s
2546920 587664 3.00000 131 12 4.00000 3.00000 25.0% 82.3 3170s
2556163 587282 3.00000 174 2 4.00000 3.00000 25.0% 82.4 3183s
2565773 586936 infeasible 169 4.00000 3.00000 25.0% 82.5 3195s
2575307 586608 infeasible 156 4.00000 3.00000 25.0% 82.5 3207s
2584675 586317 3.00000 139 4 4.00000 3.00000 25.0% 82.6 3219s
2593886 586022 3.00000 173 5 4.00000 3.00000 25.0% 82.7 3231s
2603283 585774 3.00000 160 8 4.00000 3.00000 25.0% 82.7 3242s
2611209 585496 infeasible 116 4.00000 3.00000 25.0% 82.9 3254s
2620709 585203 infeasible 143 4.00000 3.00000 25.0% 82.9 3267s
2630670 584936 3.00000 153 3 4.00000 3.00000 25.0% 82.9 3279s
2639559 584660 infeasible 84 4.00000 3.00000 25.0% 83.0 3291s
2649137 584382 infeasible 104 4.00000 3.00000 25.0% 83.1 3303s
2658475 584056 infeasible 166 4.00000 3.00000 25.0% 83.1 3317s
2668973 583739 infeasible 166 4.00000 3.00000 25.0% 83.2 3329s
2677726 583413 3.00000 178 6 4.00000 3.00000 25.0% 83.3 3342s
2687490 583102 infeasible 148 4.00000 3.00000 25.0% 83.3 3354s
2696895 582832 3.00000 156 12 4.00000 3.00000 25.0% 83.4 3365s
2705257 582484 infeasible 91 4.00000 3.00000 25.0% 83.5 3380s
2716669 582184 infeasible 151 4.00000 3.00000 25.0% 83.5 3391s
2725027 582037 3.00000 151 12 4.00000 3.00000 25.0% 83.6 3400s
2732400 581780 infeasible 159 4.00000 3.00000 25.0% 83.6 3415s
2743251 581537 infeasible 184 4.00000 3.00000 25.0% 83.6 3426s
2751686 581213 3.00000 183 15 4.00000 3.00000 25.0% 83.7 3440s
2762178 580941 infeasible 152 4.00000 3.00000 25.0% 83.7 3451s
2770196 580605 3.00000 180 11 4.00000 3.00000 25.0% 83.8 3465s
2780894 580328 3.00000 156 2 4.00000 3.00000 25.0% 83.9 3475s
2789531 580032 infeasible 118 4.00000 3.00000 25.0% 84.0 3488s
2798907 579667 3.00000 137 12 4.00000 3.00000 25.0% 84.0 3502s
2809646 579336 3.00000 157 3 4.00000 3.00000 25.0% 84.0 3514s
2818701 579030 3.00000 127 18 4.00000 3.00000 25.0% 84.1 3525s
2827607 578776 infeasible 125 4.00000 3.00000 25.0% 84.2 3536s
2836481 578423 infeasible 164 4.00000 3.00000 25.0% 84.2 3549s
2845926 578071 infeasible 163 4.00000 3.00000 25.0% 84.2 3562s
2855702 577720 3.00000 145 3 4.00000 3.00000 25.0% 84.2 3574s
2864933 577414 infeasible 169 4.00000 3.00000 25.0% 84.3 3585s
2873771 577152 3.00000 153 19 4.00000 3.00000 25.0% 84.4 3595s
2882289 576874 infeasible 120 4.00000 3.00000 25.0% 84.4 3607s
2891447 576573 infeasible 164 4.00000 3.00000 25.0% 84.5 3620s
2901840 576246 infeasible 144 4.00000 3.00000 25.0% 84.5 3633s
2911503 575959 infeasible 144 4.00000 3.00000 25.0% 84.6 3643s
2919152 575714 3.00000 136 6 4.00000 3.00000 25.0% 84.6 3654s
2927665 575449 3.00000 184 7 4.00000 3.00000 25.0% 84.7 3667s
2937740 575169 infeasible 150 4.00000 3.00000 25.0% 84.7 3680s
2947128 574887 3.00000 163 24 4.00000 3.00000 25.0% 84.8 3692s
2956076 574655 infeasible 181 4.00000 3.00000 25.0% 84.9 3702s
2964428 574429 infeasible 102 4.00000 3.00000 25.0% 85.0 3714s
2973538 574154 3.00000 137 21 4.00000 3.00000 25.0% 85.1 3728s
2983949 573911 3.00000 185 10 4.00000 3.00000 25.0% 85.1 3739s
2992752 573642 infeasible 158 4.00000 3.00000 25.0% 85.2 3752s
3002467 573369 infeasible 149 4.00000 3.00000 25.0% 85.3 3764s
3012262 573134 3.00000 175 2 4.00000 3.00000 25.0% 85.4 3775s
3020245 572855 3.00000 103 16 4.00000 3.00000 25.0% 85.4 3787s
3029346 572601 infeasible 177 4.00000 3.00000 25.0% 85.4 3800s
3039214 572331 infeasible 115 4.00000 3.00000 25.0% 85.5 3812s
3049130 572072 3.00000 118 8 4.00000 3.00000 25.0% 85.6 3824s
3058127 571820 3.00000 158 2 4.00000 3.00000 25.0% 85.6 3836s
3067771 571543 3.00000 161 3 4.00000 3.00000 25.0% 85.7 3848s
3077386 571295 3.00000 185 10 4.00000 3.00000 25.0% 85.8 3859s
3086120 571022 infeasible 179 4.00000 3.00000 25.0% 85.9 3872s
3095801 570736 3.00000 109 19 4.00000 3.00000 25.0% 85.9 3885s
3105853 570463 infeasible 120 4.00000 3.00000 25.0% 85.9 3895s
3114416 570220 3.00000 178 6 4.00000 3.00000 25.0% 86.0 3906s
3122869 569907 infeasible 178 4.00000 3.00000 25.0% 86.1 3920s
3132932 569630 3.00000 150 2 4.00000 3.00000 25.0% 86.1 3931s
3141759 569355 3.00000 158 2 4.00000 3.00000 25.0% 86.2 3941s
3150424 568983 infeasible 182 4.00000 3.00000 25.0% 86.3 3956s
3160800 568634 infeasible 161 4.00000 3.00000 25.0% 86.3 3968s
3169699 568256 infeasible 174 4.00000 3.00000 25.0% 86.4 3982s
3180657 567939 3.00000 131 13 4.00000 3.00000 25.0% 86.4 3993s
3189094 567719 infeasible 132 4.00000 3.00000 25.0% 86.4 4000s
Explored 3194744 nodes (276020467 simplex iterations) in 4000.56 seconds (1431.01 work units)
Thread count was 16 (of 16 available processors)
Solution count 56: 4 4 4 ... 4
Time limit reached
Best objective 4.000000000000e+00, best bound 3.000000000000e+00, gap 25.0000%
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (win64)
CPU model: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, instruction set [SSE2|AVX|AVX2]
Thread count: 8 physical cores, 16 logical processors, using up to 16 threads
Optimize a model with 4852 rows, 5264 columns and 19075 nonzeros
Model fingerprint: 0xcef32c23
Model has 3596 general constraints
Variable types: 3466 continuous, 1798 integer (1798 binary)
Coefficient statistics:
Matrix range [6e-05, 6e+01]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e-03, 5e+00]
GenCon rhs range [1e+00, 1e+00]
GenCon coe range [1e+00, 1e+00]
MIP start from previous solve did not produce a new incumbent solution
MIP start from previous solve violates constraint zp_4403-zp_4406-zp_4698-zp_4699-zp_4851_MultipleSol by 1.000000000
Presolve removed 1484 rows and 2644 columns
Presolve time: 0.20s
Presolved: 3368 rows, 2620 columns, 11517 nonzeros
Presolved model has 1080 SOS constraint(s)
Variable types: 1540 continuous, 1080 integer (1080 binary)
Root relaxation presolve removed 3368 rows and 2620 columns
Root relaxation presolve: All rows and columns removed
Extra simplex iterations after uncrush: 204
Root relaxation: objective 0.000000e+00, 204 iterations, 0.02 seconds (0.01 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.00000 0 225 - 0.00000 - - 0s
0 0 0.00000 0 225 - 0.00000 - - 0s
0 0 0.00000 0 174 - 0.00000 - - 0s
0 0 0.00000 0 174 - 0.00000 - - 0s
0 2 0.00000 0 174 - 0.00000 - - 0s
H 1525 1439 4.0000000 0.00000 100% 8.9 1s
1805 1321 0.00000 30 145 4.00000 0.00000 100% 25.8 5s
4484 3099 0.00000 126 25 4.00000 0.00000 100% 25.0 10s
8914 8066 1.00000 107 19 4.00000 1.00000 75.0% 24.2 15s
20827 19456 2.00000 133 23 4.00000 1.00000 75.0% 20.7 20s
22170 25983 3.00000 164 16 4.00000 2.00000 50.0% 20.7 25s
28704 33936 3.00000 163 4 4.00000 2.00000 50.0% 20.8 33s
37267 39546 3.00000 172 3 4.00000 2.00000 50.0% 20.3 38s
43453 46780 3.00000 97 18 4.00000 2.00000 50.0% 20.8 45s
51399 54212 3.00000 142 3 4.00000 2.00000 50.0% 21.2 53s
59647 59805 2.00000 181 2 4.00000 2.00000 50.0% 21.4 59s
65840 67751 3.00000 174 8 4.00000 2.00000 50.0% 21.5 68s
74468 75368 3.00000 165 6 4.00000 2.00000 50.0% 21.5 76s
82753 81088 2.00000 157 11 4.00000 2.00000 50.0% 21.4 82s
88983 88886 2.00000 153 20 4.00000 2.00000 50.0% 21.3 90s
97523 96547 3.00000 126 11 4.00000 2.00000 50.0% 21.3 98s
105768 102033 3.00000 101 20 4.00000 2.00000 50.0% 21.2 104s
111778 109969 2.00000 158 12 4.00000 2.00000 50.0% 21.4 112s
120470 116691 3.00000 151 8 4.00000 2.00000 50.0% 21.3 119s
122254 116691 2.00000 193 2 4.00000 2.00000 50.0% 21.3 120s
127826 122798 3.00000 182 6 4.00000 2.00000 50.0% 21.4 126s
134555 129059 2.00000 173 2 4.00000 2.00000 50.0% 21.4 133s
141510 135964 2.00000 150 2 4.00000 2.00000 50.0% 21.5 140s
148975 142119 2.00000 184 3 4.00000 2.00000 50.0% 21.5 147s
155730 150038 2.00000 127 14 4.00000 2.00000 50.0% 21.6 156s
164431 156337 2.00000 107 14 4.00000 2.00000 50.0% 21.6 164s
171274 162575 2.00000 151 14 4.00000 2.00000 50.0% 21.7 171s
178134 170164 3.00000 127 11 4.00000 2.00000 50.0% 21.7 180s
186463 178363 3.00000 185 3 4.00000 2.00000 50.0% 21.8 189s
195266 185131 2.00000 155 3 4.00000 2.00000 50.0% 21.7 197s
202670 190902 3.00000 121 10 4.00000 2.00000 50.0% 21.7 204s
208991 198048 3.00000 133 5 4.00000 2.00000 50.0% 21.8 212s
216729 204853 2.00000 144 26 4.00000 2.00000 50.0% 21.8 220s
224240 210629 2.00000 77 63 4.00000 2.00000 50.0% 21.8 228s
230538 217580 2.00000 160 2 4.00000 2.00000 50.0% 21.9 236s
238177 224602 2.00000 187 5 4.00000 2.00000 50.0% 21.9 245s
245879 231051 3.00000 127 13 4.00000 2.00000 50.0% 21.9 254s
252978 238113 2.00000 182 5 4.00000 2.00000 50.0% 22.0 262s
260690 245850 2.00000 177 10 4.00000 2.00000 50.0% 22.0 271s
269131 253276 3.00000 160 2 4.00000 2.00000 50.0% 22.0 281s
277289 259062 2.00000 113 20 4.00000 2.00000 50.0% 22.0 288s
283551 265827 3.00000 110 14 4.00000 2.00000 50.0% 21.9 296s
291016 273413 2.00000 166 10 4.00000 2.00000 50.0% 22.0 305s
299204 279660 2.00000 95 22 4.00000 2.00000 50.0% 22.0 312s
306017 287148 3.00000 192 2 4.00000 2.00000 50.0% 22.0 321s
314273 294609 2.00000 152 4 4.00000 2.00000 50.0% 22.0 331s
322450 300208 2.00000 183 4 4.00000 2.00000 50.0% 21.9 337s
328563 307474 3.00000 174 4 4.00000 2.00000 50.0% 22.0 346s
336619 313172 3.00000 114 14 4.00000 2.00000 50.0% 22.0 353s
342759 321204 2.00000 121 12 4.00000 2.00000 50.0% 22.0 363s
351633 326733 2.00000 108 17 4.00000 2.00000 50.0% 22.0 370s
357760 333029 3.00000 162 13 4.00000 2.00000 50.0% 22.0 378s
364724 341267 infeasible 194 4.00000 2.00000 50.0% 22.0 389s
373634 348160 3.00000 141 5 4.00000 2.00000 50.0% 22.0 397s
381151 353495 infeasible 191 4.00000 2.00000 50.0% 22.0 404s
386960 361351 2.00000 109 17 4.00000 2.00000 50.0% 22.0 413s
395494 369107 2.00000 178 4 4.00000 2.00000 50.0% 22.0 422s
403900 375519 3.00000 133 16 4.00000 2.00000 50.0% 22.0 431s
410910 382152 2.00000 156 4 4.00000 2.00000 50.0% 22.0 439s
418191 389949 2.00000 137 14 4.00000 2.00000 50.0% 22.0 449s
426760 395906 3.00000 109 14 4.00000 2.00000 50.0% 21.9 457s
433173 403315 2.00000 132 5 4.00000 2.00000 50.0% 21.9 466s
441294 410838 3.00000 124 12 4.00000 2.00000 50.0% 21.9 476s
449507 416143 2.00000 169 3 4.00000 2.00000 50.0% 21.9 483s
455386 423078 3.00000 133 3 4.00000 2.00000 50.0% 21.9 492s
462901 430292 2.00000 167 3 4.00000 2.00000 50.0% 21.9 501s
470843 436442 2.00000 173 5 4.00000 2.00000 50.0% 21.9 509s
476289 436442 2.00000 156 3 4.00000 2.00000 50.0% 21.9 510s
477549 442652 3.00000 112 16 4.00000 2.00000 50.0% 21.9 518s
484367 450711 3.00000 178 5 4.00000 2.00000 50.0% 21.9 529s
493160 456057 2.00000 133 4 4.00000 2.00000 50.0% 21.9 537s
498928 463760 2.00000 183 4 4.00000 2.00000 50.0% 21.9 548s
507429 471328 2.00000 116 19 4.00000 2.00000 50.0% 21.9 559s
515743 476933 3.00000 136 4 4.00000 2.00000 50.0% 21.9 567s
521870 483699 3.00000 127 8 4.00000 2.00000 50.0% 21.9 577s
529346 490854 3.00000 190 3 4.00000 2.00000 50.0% 21.9 587s
537183 496615 2.00000 181 2 4.00000 2.00000 50.0% 21.9 596s
543486 504621 3.00000 169 3 4.00000 2.00000 50.0% 21.9 608s
552176 510948 2.00000 158 3 4.00000 2.00000 50.0% 21.9 618s
559071 517999 3.00000 183 2 4.00000 2.00000 50.0% 21.9 627s
566684 523361 3.00000 182 3 4.00000 2.00000 50.0% 21.9 635s
572452 529810 3.00000 138 20 4.00000 2.00000 50.0% 21.9 644s
579511 535320 2.00000 168 2 4.00000 2.00000 50.0% 21.9 652s
585521 539694 3.00000 162 3 4.00000 2.00000 50.0% 21.9 658s
590263 543602 2.00000 141 22 4.00000 2.00000 50.0% 21.9 664s
594549 549439 2.00000 167 9 4.00000 2.00000 50.0% 21.9 672s
600904 556128 3.00000 148 12 4.00000 2.00000 50.0% 21.9 682s
608089 561274 2.00000 42 125 4.00000 2.00000 50.0% 21.9 689s
613807 566175 3.00000 194 2 4.00000 2.00000 50.0% 21.9 696s
619100 571602 2.00000 174 10 4.00000 2.00000 50.0% 21.9 704s
625075 577465 3.00000 147 7 4.00000 2.00000 50.0% 21.9 712s
631446 581230 3.00000 182 2 4.00000 2.00000 50.0% 21.9 718s
635547 586488 2.00000 95 24 4.00000 2.00000 50.0% 21.9 725s
641223 591292 3.00000 36 94 4.00000 2.00000 50.0% 21.9 731s
646507 595555 3.00000 152 4 4.00000 2.00000 50.0% 21.9 738s
651144 600263 3.00000 148 22 4.00000 2.00000 50.0% 21.9 744s
656318 605250 3.00000 168 3 4.00000 2.00000 50.0% 21.9 751s
661753 609565 2.00000 127 8 4.00000 2.00000 50.0% 21.9 756s
666508 613346 3.00000 161 10 4.00000 2.00000 50.0% 21.9 761s
670583 617187 3.00000 182 6 4.00000 2.00000 50.0% 21.9 766s
674836 619805 3.00000 165 4 4.00000 2.00000 50.0% 21.9 770s
677664 624778 2.00000 173 5 4.00000 2.00000 50.0% 21.9 777s
683075 628323 2.00000 158 4 4.00000 2.00000 50.0% 21.9 782s
686992 631788 3.00000 189 8 4.00000 2.00000 50.0% 21.9 787s
690769 635633 3.00000 178 9 4.00000 2.00000 50.0% 21.9 792s
695022 638630 3.00000 111 20 4.00000 2.00000 50.0% 21.9 796s
698255 642158 2.00000 185 4 4.00000 2.00000 50.0% 22.0 801s
702131 645895 2.00000 194 4 4.00000 2.00000 50.0% 22.0 806s
706276 649546 3.00000 142 2 4.00000 2.00000 50.0% 22.0 811s
710201 652541 3.00000 154 2 4.00000 2.00000 50.0% 22.0 815s
713498 656480 2.00000 170 3 4.00000 2.00000 50.0% 22.0 821s
717827 660212 2.00000 172 2 4.00000 2.00000 50.0% 22.0 825s
725157 666787 2.00000 121 17 4.00000 2.00000 50.0% 22.0 834s
729076 669787 2.00000 133 13 4.00000 2.00000 50.0% 22.0 838s
732314 672548 3.00000 160 4 4.00000 2.00000 50.0% 22.0 841s
735313 675802 3.00000 184 2 4.00000 2.00000 50.0% 22.0 845s
741718 681429 3.00000 194 4 4.00000 2.00000 50.0% 22.0 853s
745004 684002 3.00000 169 9 4.00000 2.00000 50.0% 22.0 856s
750984 688929 3.00000 142 2 4.00000 2.00000 50.0% 22.0 862s
753184 691736 3.00000 185 3 4.00000 2.00000 50.0% 22.0 866s
759014 696865 infeasible 147 4.00000 2.00000 50.0% 22.0 872s
761944 699284 3.00000 150 23 4.00000 2.00000 50.0% 22.0 875s
767106 703785 3.00000 150 4 4.00000 2.00000 50.0% 22.0 881s
771403 707809 2.00000 52 103 4.00000 2.00000 50.0% 22.0 886s
776763 712218 3.00000 108 30 4.00000 2.00000 50.0% 22.0 891s
781374 716894 2.00000 168 7 4.00000 2.00000 50.0% 22.0 897s
785108 720261 2.00000 159 2 4.00000 2.00000 50.0% 22.0 901s
789835 723802 2.00000 112 17 4.00000 2.00000 50.0% 22.0 905s
793139 727199 2.00000 76 67 4.00000 2.00000 50.0% 22.0 910s
799336 732556 2.00000 127 16 4.00000 2.00000 50.0% 22.0 916s
804635 737393 2.00000 190 4 4.00000 2.00000 50.0% 22.0 921s
809431 741474 2.00000 57 87 4.00000 2.00000 50.0% 22.0 925s
813593 742197 3.00000 169 5 4.00000 3.00000 25.0% 22.0 935s
820252 741846 infeasible 157 4.00000 3.00000 25.0% 22.3 947s
828647 741598 3.00000 136 7 4.00000 3.00000 25.0% 22.6 955s
834667 741313 3.00000 134 7 4.00000 3.00000 25.0% 22.8 964s
841152 740995 infeasible 83 4.00000 3.00000 25.0% 23.3 978s
850620 740654 3.00000 136 15 4.00000 3.00000 25.0% 23.7 991s
859175 740098 infeasible 151 4.00000 3.00000 25.0% 24.1 1013s
872045 739888 infeasible 182 4.00000 3.00000 25.0% 24.4 1022s
877767 739585 infeasible 158 4.00000 3.00000 25.0% 24.9 1037s
887676 739243 3.00000 167 2 4.00000 3.00000 25.0% 25.4 1054s
898876 738910 infeasible 168 4.00000 3.00000 25.0% 25.8 1067s
907423 738417 infeasible 152 4.00000 3.00000 25.0% 26.2 1086s
919020 738013 infeasible 195 4.00000 3.00000 25.0% 26.5 1101s
928460 737584 3.00000 169 6 4.00000 3.00000 25.0% 26.8 1116s
938013 737129 infeasible 152 4.00000 3.00000 25.0% 27.2 1131s
948288 737009 3.00000 184 10 4.00000 3.00000 25.0% 27.5 1142s
955590 736716 3.00000 159 3 4.00000 3.00000 25.0% 27.9 1159s
966619 736290 3.00000 140 11 4.00000 3.00000 25.0% 28.2 1176s
977055 735932 infeasible 193 4.00000 3.00000 25.0% 28.5 1188s
984577 735435 3.00000 152 23 4.00000 3.00000 25.0% 28.8 1206s
995552 734979 3.00000 184 4 4.00000 3.00000 25.0% 29.0 1221s
1005012 734626 infeasible 154 4.00000 3.00000 25.0% 29.4 1236s
1014603 734296 infeasible 74 4.00000 3.00000 25.0% 29.7 1248s
1022555 733843 3.00000 103 19 4.00000 3.00000 25.0% 30.0 1266s
1034222 733416 infeasible 180 4.00000 3.00000 25.0% 30.3 1282s
1043951 732992 3.00000 179 4 4.00000 3.00000 25.0% 30.6 1296s
1053815 732620 infeasible 175 4.00000 3.00000 25.0% 30.9 1310s
1062893 732268 3.00000 124 13 4.00000 3.00000 25.0% 31.2 1324s
1067229 732268 infeasible 130 4.00000 3.00000 25.0% 31.3 1325s
1071935 731891 3.00000 114 17 4.00000 3.00000 25.0% 31.4 1340s
1081864 731497 infeasible 173 4.00000 3.00000 25.0% 31.7 1356s
1092206 731156 infeasible 195 4.00000 3.00000 25.0% 32.0 1367s
1099807 730727 3.00000 155 3 4.00000 3.00000 25.0% 32.3 1386s
1111858 730382 infeasible 160 4.00000 3.00000 25.0% 32.5 1397s
1118509 730048 3.00000 173 10 4.00000 3.00000 25.0% 32.8 1411s
1127741 729705 3.00000 127 20 4.00000 3.00000 25.0% 33.1 1427s
1137912 729276 3.00000 160 6 4.00000 3.00000 25.0% 33.4 1447s
1150357 728889 infeasible 166 4.00000 3.00000 25.0% 33.6 1460s
1158900 728466 infeasible 179 4.00000 3.00000 25.0% 33.9 1478s
1170029 728104 3.00000 163 5 4.00000 3.00000 25.0% 34.0 1490s
1177725 727720 3.00000 137 14 4.00000 3.00000 25.0% 34.2 1503s
1186901 727309 3.00000 167 17 4.00000 3.00000 25.0% 34.5 1519s
1197388 726830 3.00000 171 2 4.00000 3.00000 25.0% 34.7 1538s
1208467 726359 3.00000 128 15 4.00000 3.00000 25.0% 34.9 1554s
1219308 725940 infeasible 144 4.00000 3.00000 25.0% 35.1 1568s
1227407 725543 infeasible 184 4.00000 3.00000 25.0% 35.2 1583s
1237588 725200 3.00000 133 5 4.00000 3.00000 25.0% 35.4 1595s
1245439 724813 infeasible 103 4.00000 3.00000 25.0% 35.6 1610s
1255564 724550 infeasible 191 4.00000 3.00000 25.0% 35.8 1620s
1262221 724275 3.00000 77 65 4.00000 3.00000 25.0% 36.1 1634s
1271620 723837 3.00000 119 19 4.00000 3.00000 25.0% 36.4 1654s
1283704 723384 infeasible 167 4.00000 3.00000 25.0% 36.6 1672s
1295067 723055 infeasible 154 4.00000 3.00000 25.0% 36.7 1683s
1302478 722677 infeasible 146 4.00000 3.00000 25.0% 37.0 1701s
1313912 722287 3.00000 183 6 4.00000 3.00000 25.0% 37.1 1716s
1323650 721867 infeasible 154 4.00000 3.00000 25.0% 37.3 1732s
1333810 721383 infeasible 152 4.00000 3.00000 25.0% 37.4 1750s
1345002 720911 infeasible 140 4.00000 3.00000 25.0% 37.5 1766s
1355030 720584 3.00000 155 2 4.00000 3.00000 25.0% 37.5 1776s
1361575 720184 3.00000 93 36 4.00000 3.00000 25.0% 37.7 1791s
1372015 719954 3.00000 182 10 4.00000 3.00000 25.0% 37.9 1802s
1379431 719562 3.00000 187 7 4.00000 3.00000 25.0% 38.1 1820s
1390267 719180 3.00000 157 2 4.00000 3.00000 25.0% 38.2 1834s
1396865 719180 3.00000 147 10 4.00000 3.00000 25.0% 38.3 1835s
1399867 718745 infeasible 154 4.00000 3.00000 25.0% 38.4 1852s
1410672 718297 3.00000 191 4 4.00000 3.00000 25.0% 38.5 1865s
1419472 717938 3.00000 179 5 4.00000 3.00000 25.0% 38.6 1876s
1427101 717651 3.00000 168 2 4.00000 3.00000 25.0% 38.8 1888s
1435142 717350 infeasible 80 4.00000 3.00000 25.0% 39.0 1903s
1444633 716935 infeasible 171 4.00000 3.00000 25.0% 39.2 1924s
1457554 716488 3.00000 104 12 4.00000 3.00000 25.0% 39.3 1942s
1468463 716102 infeasible 172 4.00000 3.00000 25.0% 39.4 1957s
1478351 715761 3.00000 182 5 4.00000 3.00000 25.0% 39.5 1969s
1486280 715446 3.00000 118 11 4.00000 3.00000 25.0% 39.6 1982s
1494855 715113 infeasible 200 4.00000 3.00000 25.0% 39.8 1997s
1504892 714818 infeasible 140 4.00000 3.00000 25.0% 39.9 2010s
1513235 714419 infeasible 106 4.00000 3.00000 25.0% 40.1 2028s
1525148 714187 3.00000 141 5 4.00000 3.00000 25.0% 40.2 2042s
1533332 713885 3.00000 155 14 4.00000 3.00000 25.0% 40.3 2055s
1542270 713558 infeasible 191 4.00000 3.00000 25.0% 40.5 2068s
1551023 713270 infeasible 182 4.00000 3.00000 25.0% 40.7 2080s
1558619 712930 infeasible 170 4.00000 3.00000 25.0% 40.8 2098s
1570009 712569 infeasible 168 4.00000 3.00000 25.0% 41.0 2114s
1579286 712160 infeasible 144 4.00000 3.00000 25.0% 41.1 2131s
1590137 711811 3.00000 175 10 4.00000 3.00000 25.0% 41.3 2145s
1599220 711402 infeasible 182 4.00000 3.00000 25.0% 41.4 2164s
1603645 711402 3.00000 165 2 4.00000 3.00000 25.0% 41.4 2165s
1610867 711049 infeasible 192 4.00000 3.00000 25.0% 41.5 2179s
1620416 710639 3.00000 189 6 4.00000 3.00000 25.0% 41.6 2196s
1631196 710254 infeasible 152 4.00000 3.00000 25.0% 41.7 2208s
1639623 709985 3.00000 174 2 4.00000 3.00000 25.0% 41.8 2218s
1646584 709687 infeasible 169 4.00000 3.00000 25.0% 42.0 2233s
1656710 709312 infeasible 122 4.00000 3.00000 25.0% 42.1 2251s
1667953 709057 infeasible 130 4.00000 3.00000 25.0% 42.2 2261s
1673852 708741 infeasible 185 4.00000 3.00000 25.0% 42.3 2278s
1684802 708350 3.00000 95 20 4.00000 3.00000 25.0% 42.5 2296s
1695613 708051 3.00000 171 3 4.00000 3.00000 25.0% 42.6 2307s
1703460 707711 3.00000 142 13 4.00000 3.00000 25.0% 42.7 2322s
1712860 707431 infeasible 186 4.00000 3.00000 25.0% 42.8 2336s
1721412 707134 3.00000 156 22 4.00000 3.00000 25.0% 43.0 2351s
1731877 706806 infeasible 151 4.00000 3.00000 25.0% 43.1 2368s
1742311 706383 3.00000 96 22 4.00000 3.00000 25.0% 43.3 2386s
1753604 706077 infeasible 178 4.00000 3.00000 25.0% 43.3 2398s
1761316 705747 3.00000 101 16 4.00000 3.00000 25.0% 43.5 2412s
1770740 705372 3.00000 187 6 4.00000 3.00000 25.0% 43.6 2429s
1781335 705074 infeasible 189 4.00000 3.00000 25.0% 43.7 2440s
1789177 704785 3.00000 171 2 4.00000 3.00000 25.0% 43.8 2454s
1798282 704436 infeasible 167 4.00000 3.00000 25.0% 44.0 2470s
1808357 704061 3.00000 169 5 4.00000 3.00000 25.0% 44.1 2488s
1819282 703724 infeasible 164 4.00000 3.00000 25.0% 44.2 2503s
1829419 703471 infeasible 165 4.00000 3.00000 25.0% 44.2 2514s
1836488 703240 3.00000 92 27 4.00000 3.00000 25.0% 44.4 2526s
1844545 702981 3.00000 170 7 4.00000 3.00000 25.0% 44.5 2542s
1855328 702651 infeasible 113 4.00000 3.00000 25.0% 44.6 2559s
1855870 702651 3.00000 129 24 4.00000 3.00000 25.0% 44.7 2560s
1865964 702335 3.00000 185 6 4.00000 3.00000 25.0% 44.7 2575s
1876206 702085 infeasible 176 4.00000 3.00000 25.0% 44.8 2587s
1884472 701871 infeasible 188 4.00000 3.00000 25.0% 44.9 2599s
1892170 701622 3.00000 114 15 4.00000 3.00000 25.0% 45.1 2614s
1902385 701269 3.00000 181 2 4.00000 3.00000 25.0% 45.2 2634s
1909760 701269 3.00000 152 5 4.00000 3.00000 25.0% 45.3 2635s
1914624 700890 infeasible 169 4.00000 3.00000 25.0% 45.3 2653s
1925773 700574 3.00000 139 2 4.00000 3.00000 25.0% 45.3 2665s
1933977 700298 infeasible 170 4.00000 3.00000 25.0% 45.4 2677s
1942385 699882 3.00000 180 4 4.00000 3.00000 25.0% 45.5 2696s
1953695 699566 3.00000 164 13 4.00000 3.00000 25.0% 45.5 2708s
1961615 699257 3.00000 173 2 4.00000 3.00000 25.0% 45.6 2722s
1970514 698912 infeasible 144 4.00000 3.00000 25.0% 45.7 2738s
1980879 698701 3.00000 153 7 4.00000 3.00000 25.0% 45.8 2752s
1990266 698392 infeasible 163 4.00000 3.00000 25.0% 45.9 2769s
2000095 698031 3.00000 137 5 4.00000 3.00000 25.0% 45.9 2785s
2010506 697772 infeasible 135 4.00000 3.00000 25.0% 45.9 2795s
2017615 697516 infeasible 92 4.00000 3.00000 25.0% 46.1 2809s
2026539 697212 infeasible 177 4.00000 3.00000 25.0% 46.2 2824s
2036647 696955 infeasible 122 4.00000 3.00000 25.0% 46.2 2836s
2044690 696545 infeasible 76 4.00000 3.00000 25.0% 46.4 2856s
2056984 696183 3.00000 156 4 4.00000 3.00000 25.0% 46.4 2869s
2064996 695821 infeasible 167 4.00000 3.00000 25.0% 46.5 2887s
2076962 695512 3.00000 174 10 4.00000 3.00000 25.0% 46.5 2901s
2085617 695207 infeasible 183 4.00000 3.00000 25.0% 46.6 2915s
2095016 694937 3.00000 132 14 4.00000 3.00000 25.0% 46.6 2928s
2103762 694638 infeasible 112 4.00000 3.00000 25.0% 46.7 2942s
2113183 694377 3.00000 160 4 4.00000 3.00000 25.0% 46.8 2955s
2121976 694017 infeasible 149 4.00000 3.00000 25.0% 46.9 2973s
2133228 693608 infeasible 161 4.00000 3.00000 25.0% 46.9 2990s
2143601 693268 infeasible 173 4.00000 3.00000 25.0% 46.9 3005s
2153625 692978 infeasible 158 4.00000 3.00000 25.0% 47.0 3015s
2160529 692637 3.00000 171 27 4.00000 3.00000 25.0% 47.1 3032s
2171000 692278 3.00000 188 5 4.00000 3.00000 25.0% 47.1 3048s
2181295 691942 3.00000 186 2 4.00000 3.00000 25.0% 47.1 3062s
2190223 691635 infeasible 160 4.00000 3.00000 25.0% 47.2 3075s
2198780 691310 infeasible 178 4.00000 3.00000 25.0% 47.2 3090s
2208883 690969 infeasible 166 4.00000 3.00000 25.0% 47.3 3105s
2218460 690857 3.00000 173 12 4.00000 3.00000 25.0% 47.4 3116s
2225774 690615 infeasible 39 4.00000 3.00000 25.0% 47.4 3132s
2235788 690358 infeasible 156 4.00000 3.00000 25.0% 47.5 3146s
2244853 690102 infeasible 157 4.00000 3.00000 25.0% 47.6 3160s
2254333 689850 infeasible 128 4.00000 3.00000 25.0% 47.6 3174s
2263001 689521 infeasible 128 4.00000 3.00000 25.0% 47.7 3191s
2273576 689208 3.00000 187 5 4.00000 3.00000 25.0% 47.8 3205s
2282825 688880 infeasible 126 4.00000 3.00000 25.0% 47.8 3221s
2293257 688640 3.00000 136 10 4.00000 3.00000 25.0% 47.9 3234s
2301675 688324 3.00000 162 3 4.00000 3.00000 25.0% 48.0 3251s
2312853 687994 3.00000 165 10 4.00000 3.00000 25.0% 48.0 3266s
2321979 687679 infeasible 135 4.00000 3.00000 25.0% 48.1 3280s
2331166 687380 infeasible 177 4.00000 3.00000 25.0% 48.1 3294s
2340283 687018 3.00000 175 4 4.00000 3.00000 25.0% 48.2 3310s
2351003 686668 3.00000 157 8 4.00000 3.00000 25.0% 48.2 3325s
2360751 686346 3.00000 142 9 4.00000 3.00000 25.0% 48.2 3339s
2369347 686064 infeasible 164 4.00000 3.00000 25.0% 48.3 3351s
2377861 685682 infeasible 185 4.00000 3.00000 25.0% 48.3 3368s
2388415 685350 infeasible 179 4.00000 3.00000 25.0% 48.4 3381s
2396281 685045 infeasible 196 4.00000 3.00000 25.0% 48.4 3396s
2406306 684708 3.00000 181 5 4.00000 3.00000 25.0% 48.4 3411s
2416249 684393 3.00000 143 4 4.00000 3.00000 25.0% 48.5 3425s
2425376 684131 infeasible 181 4.00000 3.00000 25.0% 48.5 3437s
2433610 683843 3.00000 155 8 4.00000 3.00000 25.0% 48.6 3453s
2444016 683625 infeasible 136 4.00000 3.00000 25.0% 48.7 3464s
2451060 683326 infeasible 93 4.00000 3.00000 25.0% 48.7 3480s
2461779 683037 3.00000 190 4 4.00000 3.00000 25.0% 48.8 3496s
2471740 682745 infeasible 161 4.00000 3.00000 25.0% 48.8 3511s
2481182 682375 3.00000 164 16 4.00000 3.00000 25.0% 48.9 3530s
2492386 682020 infeasible 191 4.00000 3.00000 25.0% 48.9 3545s
2502067 681750 infeasible 187 4.00000 3.00000 25.0% 48.9 3556s
2510055 681445 infeasible 103 4.00000 3.00000 25.0% 49.0 3570s
2519580 681186 infeasible 135 4.00000 3.00000 25.0% 49.0 3583s
2527857 680954 3.00000 97 28 4.00000 3.00000 25.0% 49.1 3595s
2535431 680699 3.00000 162 2 4.00000 3.00000 25.0% 49.2 3610s
2545258 680360 3.00000 137 19 4.00000 3.00000 25.0% 49.2 3629s
2557319 680109 3.00000 186 2 4.00000 3.00000 25.0% 49.3 3643s
2566102 679876 3.00000 140 3 4.00000 3.00000 25.0% 49.3 3656s
2574559 679598 infeasible 124 4.00000 3.00000 25.0% 49.4 3671s
2585165 679318 infeasible 187 4.00000 3.00000 25.0% 49.4 3686s
2594669 678978 infeasible 156 4.00000 3.00000 25.0% 49.4 3703s
2605319 678623 3.00000 152 3 4.00000 3.00000 25.0% 49.4 3718s
2614856 678266 3.00000 154 9 4.00000 3.00000 25.0% 49.5 3733s
2624667 677926 infeasible 128 4.00000 3.00000 25.0% 49.5 3746s
2633841 677525 infeasible 148 4.00000 3.00000 25.0% 49.5 3763s
2644348 677227 infeasible 192 4.00000 3.00000 25.0% 49.5 3772s
2650768 676999 3.00000 175 4 4.00000 3.00000 25.0% 49.6 3782s
2657446 676712 3.00000 179 13 4.00000 3.00000 25.0% 49.7 3798s
2667589 676437 3.00000 185 2 4.00000 3.00000 25.0% 49.7 3810s
2675360 676065 3.00000 149 2 4.00000 3.00000 25.0% 49.8 3830s
2687762 675729 infeasible 153 4.00000 3.00000 25.0% 49.8 3846s
2697564 675431 infeasible 179 4.00000 3.00000 25.0% 49.8 3859s
2706430 675118 3.00000 184 2 4.00000 3.00000 25.0% 49.9 3875s
2716961 674799 3.00000 140 18 4.00000 3.00000 25.0% 49.9 3889s
2726124 674466 3.00000 175 2 4.00000 3.00000 25.0% 49.9 3906s
2736817 674258 infeasible 138 4.00000 3.00000 25.0% 49.9 3917s
2743391 673996 3.00000 99 26 4.00000 3.00000 25.0% 50.0 3931s
2752425 673691 3.00000 160 14 4.00000 3.00000 25.0% 50.0 3946s
2762384 673414 3.00000 140 8 4.00000 3.00000 25.0% 50.1 3959s
2771129 673044 3.00000 136 7 4.00000 3.00000 25.0% 50.1 3977s
2782839 672667 infeasible 147 4.00000 3.00000 25.0% 50.1 3994s
2793252 672410 3.00000 178 4 4.00000 3.00000 25.0% 50.1 4000s
Explored 2797767 nodes (140368330 simplex iterations) in 4000.45 seconds (1070.20 work units)
Thread count was 16 (of 16 available processors)
Solution count 25: 4 4 4 ... 4
Time limit reached
Best objective 4.000000000000e+00, best bound 3.000000000000e+00, gap 25.0000%
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (win64)
-
Hi Carlos,
It seems that you are iteratively solving many related problems.
What algorithm have you implemented? Maybe you are using an external package to solve this?
The first thing I am noticing is the line:Optimal solution found at node 45785 - now completing solution pool...
This means that non-default parameters are being used (setting the PoolSearchMode or related parameters)
Does the algorithm require multiple solutions?Cheers,
David0 -
Hello David!
Yes, I am interested in many solutions at the same time. The concept of this MILP is to have a network and find the minimal cut set that renders the network unable to produce biomass. Every solution found is added as a constraint so it does not come up again.
To your first question, I have developed the problem formulation in python and I am using the gurobi api to solve it. After retreving the solutions I add them as constraints as explained above and then optimize the problem again.
But I found that larger time limits gave me better results that optimizing many times with smaller time limits, I do not know if this is clear.
My goal is to try and reduce the computational time if possible.0 -
Hi Carlos,
I think I understand: so are you adding constraints to remove all the previously found solutions?
In that case, it is expected that the problem gets harder and harder as the process goes on.
What is the end goal? Surely you will end up with an infeasible problem? If you have a reference (paper or book) for this algorithm maybe this will be a bit clearer.As far as Gurobi parameters go, I can probably recommend MIPFocus = 2 or 3 as a good incumbent is found easily (typically within the first 1s or so) but the bound takes a lot of effort to improve (which is why longer times help).
Cheers,
David0 -
Hello again David,
I can give you a quick layout of how it is intend to work, we launch the optimization problem and gurobi is very good at finding solutions of length 1, we add does constraints and try to solve for the solutions of length 2 and so on. The length is a parameter that we can change, we are doing our benchmarks to see how many time does it take to solve with differents lengths.
If the optimization returns no solution the algorithm stops or optimality is reached and the length of the solution is the desired one.
Yes, I have set the MIPFocus to 3 and I having good results.
So, I come up with some questions,I am currentry using these parameters:
integralityTolerance = 1e-5# Setting gurobi parametersenv = interface.Env(empty=True)env.setParam("OptimalityTol", integralityTolerance) # equivalent to mip.tolerances.integralityenv.setParam("Heuristics", 0.1) # equivalent to mip.strategy.heuristicfreqenv.setParam("RINS", 150) # equivalent to mip.strategy.rinsheurenv.setParam("MIPFocus", 3) # equivalent to emphasis.mipenv.setParam("TimeLimit", max(1, timelimit)) # equivalent to timelimitenv.setParam("Threads", 0) # equivalent to threadsenv.setParam("PoolSolutions", 10000) # store up to 10,000 solutionsenv.setParam("PoolGap", 0.01) # allow up to 1% gap from optimal solutionenv.setParam("PoolSearchMode", 1) # focus on finding diverse solutionsenv.setParam("Cutoff", cutoff) # stop after finding maxKOLength solutionsMany thaks for your attention,
Carlos0 -
Hi Carlos,
Cool, thanks for the extra info.
I would consider removing the Heuristics + RINS parameters.
If this doesn't harm the model, MIPFocus 3 should be enough.
Also, I would leave OptimalityTol also out, if you want to control the integrality tolerance you can use IntFeasTol.This is a tricky problem though. Some other things I would try:
- Strengthen the model somehow using the information from the solution (maybe reduce the size of the next graph?). Try different ways of cutting off the solution.
- Reformulating your SOS constraints or playing around with PreSOS1Encoding/PreSOS2Encoding (depending on the type of constraint that you have). This may result in a model that converges faster.
- Maybe also play around with Presolve.
Cheers,
David0 -
Sounds amazing David, thanks for the suggestion.
Could there be a way to given a timelimit status, resend the same problem with the known solutions. Instead of adding them as constraints, more like a wam start. Talking to you I came up with that idea.
0 -
Hi Carlos,
That is possible but it won't help with speeding up the bound (the current bottleneck) as with MIP start you will be providing a new incumbent (which I suspect is already the optimal value and this is found fairly easily).Cheers,
David0 -
Hey David,
Thanks for commenting back, I have some updates.
The PreSOS1Encoding with value 2 is giving me better results. So many thanks for the suggestion, I have also implemented a piece of code that sets the bounds of some variables to zero if a condition is met.
But I am stilling getting long computational times for > 10,000 seconds for some problems.
Why can gurobi find the optimal in problems the first problems but then it cannot,
Is it that at first it uses the variables directly and the it needs to do combinations of variables?
Thanks David,
Carlos
0 -
Hi Carlos,
The PreSOS1Encoding with value 2 is giving me better results. So many thanks for the suggestion, I have also implemented a piece of code that sets the bounds of some variables to zero if a condition is met.
Nice!
Why can gurobi find the optimal in problems the first problems but then it cannot,
Is it that at first it uses the variables directly and the it needs to do combinations of variables?Indeed, it seems that this problem gets much harder as the length increases.
This is sometimes called combinatorial explosion, i.e. problems get exponentially harder as you increase the length. You can see this in your log as the number of unexplored nodes in your tree grows and remains quite high (probably for a while even in your 10000s runs), this indicates that the solver will probably struggle.You should explore alternative formulations for your problem. It is possible that better/different formulations (or even solution procedures!) exist in the literature that lead to tighter relaxations.
Un saludo,
David0
Please sign in to leave a comment.
Comments
9 comments