Skip to main content

Running into a memory error when running optimization over a large time period

Answered

Comments

5 comments

  • Sven Donders
    Gurobi-versary
    First Comment

    That's a good question, I'm struggling with a simular problem

    0
  • Jue Xue
    Gurobi Staff Gurobi Staff

    Hi Pim,

    Thanks posting. Let me see if I can help.

    Let me start with a question: the memory error you encountered (for 365 days) happened during model building, or during model solving?

    Assuming it happened during model solving, I will recommend this article useful: How do I avoid an out-of-memory condition.

    For possible model improvement, can you share a self-contained code, say, for "10 days"?

    0
  • Pim van Velzen
    Gurobi-versary
    First Comment
    First Question

    Hi Jue,

    Thank you for your response!

    The problem arose when I was solving the model. I've already tried the tips that were in the article but unfortunately this didn't help. 


    import numpy as np 
    import math
    from gurobipy import *
    import pandas as pd
    import gurobipy as gp
    import matplotlib.pyplot as plt

    # Data
    # ---- Indices ----
    Ships = ('S1', 'S2','S3', 'S4', 'S5')
    Month = ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'July', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec')

    # ---- Parameters ----
    # ---- Ship parameters ----
    S_capacity = np.array([[22600], [22600], [22600], [22600], [22600],
                           [9000],[9000],[9000],[9000],[9000]])

    S_Pcosts = np.array([[39000000],[39000000],[39000000],[39000000],[39000000],
                         [22000000],[22000000],[22000000],[22000000],[22000000]])

    S_Tcosts = np.array([[444598],[444598],[444598],[444598],[444598],
                         [272823],[272823],[272823],[272823],[272823]])

    T_time = np.array([[17],[17],[17],[17],[17],[19],[19],[19],[19],[19]])

    # ---- Site parameters
    Production = []
    Days = []

    for n in range(10):
        Production += [[803.65]]
        Days += [n]

    Production = np.array(Production)


    T_CAPEX_m3 = 552.339 #USD per m3. Dit vermenigvuldigen met m3 ammonia van een tank
    T_OPEX_per = 0.03 #percentage van capex is deel van de opex
    T_OPEX_elek = 2.497 #elecricity price per year per m3


    # ---- Indices as sets ----
    #sets
    I = range(len(S_capacity))
    #J = range(len(T_capacity))
    K = range(len(Production))

    # Decision variables
    # ---- Number of ships i in month k
    x = {} 
    for i in I:
        for k in K:
            x[i,k] = model.addVar(lb=0, vtype= GRB.BINARY, name='X[' + str(i) + str(k) + ']')

    #---- Number of storage tanks of capacity j
    w = {}
    w = model.addVar(lb=0, vtype= GRB.INTEGER)

    # Eigenlijk moet deze ook een upperbound krijgen toch? Want storage tank heeft een capaciteit van 50.000/60.0000. Maar dat zou dan een constraint moeten zijn    
    # ---- Tank storage capacity used in month k    
    v = {}
    for k in K:
        v[k] = model.addVar(lb=0, vtype= GRB.CONTINUOUS, name= 'V[' + str(k) + ']' )

    #De vervoerde hoeveelheid
    y = {}
    for k in K:
        y[k] = model.addVar(lb=0, vtype= GRB.CONTINUOUS, name= 'Y[' + str(k) + ']')
        
    z = {}
    for i in I:
        for k in K:
            z[i,k] = model.addVar(lb=0, vtype = GRB.BINARY, name ='Z[' + str(i) + str(k) + ']')

    d = {}
    for i in I:
        for k in K:
            d[i,k] = model.addVar(lb=0, vtype= GRB.INTEGER, name = 'D[' + str(i) + str(k) + ']')
            
    c = {}
    for i in I:
        for k in K:
            c[i,k] = model.addVar(lb=0, vtype= GRB.INTEGER, name= 'C[' + str(i) + str(k) + ']')
            
    s = {}
    for i in I:
        s[i] = model.addVar(lb=0, vtype= GRB.INTEGER, name= 'S[' + str(i) + ']')
    # Integrate new variables
    model.update()

    # ---- Objective Function ----
    model.setObjective(quicksum(x[i,k] * S_Tcosts[i] for i in I for k in K) + quicksum(s[i]* S_Pcosts[i] for i in I) +
                        w * T_CAPEX_m3 + (w * T_CAPEX_m3) * 0.03 + T_OPEX_elek * w
                        , GRB.MINIMIZE)
    model.update()

    # ---- Constraints ----
    #Constraint 0: Demand is satisfied
    con0 = {}
    con0 = model.addConstr(quicksum(y[k] for k in K) == quicksum(Production[k] for k in K))

    #Constraint 1: Tank storage capacity needs to be equal or greater than the maximum used storage
    con1 = {}
    for k in K:
        con1[k] = model.addConstr(v[k] <= w)

    #Constraint 2: On site ammonia in storage calculation for time step 0
    con2 = {}
    for k in K:
        if k == 0:
            con2[k] = model.addConstr(v[k] ==  - y[k] + Production[k])
            
    #Constraint 3: On site ammonia in storage calculation for other steps
    con3 = {}
    for k in K:
        if k != 0:
            con3[k] = model.addConstr( - y[k] + v[k-1] + Production[k] == v[k])

    # #Constraint 4: Transported amount in a time step needs to be smaller or equal to the sum of the produced amount untill that that time step
    # con4 = {}
    # for k in K:
    #     con4[k] = model.addConstr(y[k] <= quicksum( Production[k] for k in K))

    #Constraint 5: The transported amount in a time step needs to be smaller or equal to the capacity of the ship transporting in that time step
    con5 = {}
    for k in K:    
        con5[k] = model.addConstr(quicksum(x[i,k] * S_capacity[i] for i in I)>= y[k])

    #Constraint 6: All ships are available in the first time step
    con6 = {}
    for i in I:
        for k in K:
            if k == 0:
                con6 = model.addConstr(z[i,k] == 1)

    #Constraint 7: A ship becomes available if their counter is greater or equal to their trip time
    con7 = {}
    for i in I:
        for k in K:
            con7[i,k] = model.addConstrs((z[i,k] == 1) >> (d[i,k] >= T_time[i]) for i in I for k in range(0, len(K)))
            con7[i,k] = model.addConstrs((z[i,k] == 0) >> (d[i,k] <= (T_time[i]-1) ) for i in I for k in range(0, len(K)))

    #Constraint 8: In the first time step the counter is equal to the travel time
    con8 = {}
    for i in I:
        for k in K:
            if k == 0:
                con8[i,k] = model.addConstr(d[i,k] == T_time[i])

    #Constraint 9: 
    con9 = {}
    for i in I:
        for k in K:
            if k != 0:
                con9[i,k] = model.addConstrs((c[i,k+1] == 0) >> (x[i,k] == 1) for i in I for k in range(0, len(K)-1))
                con9[i,k] = model.addConstrs((c[i,k+1] == 1) >> (x[i,k] == 0) for i in I for k in range(0,len(K)-1))

    #Constraint 10:         
    con10 = {}
    for i in I:
        for k in K:
            if k != 0:
                con10[i,k] = model.addConstr(c[i,k] *((d[i,k-1]) +1) == d[i,k])

    #Constraint 11:
    con11 = {}
    for i in I:
        for k in K:
            con11[i,k] = model.addConstr(x[i,k] <= z[i,k])

    #Constraint 12:
    con12 = {}
    for i in I:
        con12[i] = model.addConstr(s[i] == max_(x[i,k] for k in K))

    #Constraint 13: The storage capacity of the tankt needs to be larger or equal to the capacity of the largest ship time 1.5
    con13 = {}
    for i in I:
        con13[i] = model.addConstr(max(S_capacity[i]) * 1.5 * s[i] <= w)

    #Constraint 14:
    con14 = {}
    for k in K:
         con14[k] = model.addConstr(quicksum(x[i,k] for i in I) <= 1)
        

    # ---- Solve ----
    model.update()
    model.setParam('OutputFlag', True) # silencing gurobi output or not
    model.setParam('MIPGap', 0)       # find the optimal solution
    model.write("output.lp")           # print the model in .lp format file
    model.update()
    #model.Params.timeLimit = 1800

    model.optimize()

    This is the code for 10 days, which runs in 2 seconds. 

    0
  • Jue Xue
    Gurobi Staff Gurobi Staff

    Hi Pim,

    Thanks for sharing the code and sorry for getting back longer than I expected.

    After looking into the code, you have created many redundant constraints. Specifically, cons7 and cons9.

    Please consider the following changes and let me know how it works now.

    #Constraint 7: A ship becomes available if their counter is greater or equal to their trip time
    con7 = {}
    for i in I:
        for k in K:
            model.addConstr((z[i,k] == 1) >> (d[i,k] >= T_time[i]))
            con7[i,k] = model.addConstr((z[i,k] == 0) >> (d[i,k] <= (T_time[i]-1)))
    #         con7[i,k] = model.addConstrs((z[i,k] == 1) >> (d[i,k] >= T_time[i]) for i in I for k in range(0, len(K)))
    #         con7[i,k] = model.addConstrs((z[i,k] == 0) >> (d[i,k] <= (T_time[i]-1) ) for i in I for k in range(0, len(K)))
    #Constraint 9: 
    con9 = {}
    for i in I:
        for k in K:
            if k != 0:
                con9[i,k] = model.addConstr((c[i,k] == 0) >> (x[i,k-1] == 1))
                con9[i,k] = model.addConstr((c[i,k] == 1) >> (x[i,k-1] == 0))
    #             con9[i,k] = model.addConstrs((c[i,k+1] == 0) >> (x[i,k] == 1) for i in I for k in range(0, len(K)-1))
    #             con9[i,k] = model.addConstrs((c[i,k+1] == 1) >> (x[i,k] == 0) for i in I for k in range(0,len(K)-1))
    0
  • Pim van Velzen
    Gurobi-versary
    First Comment
    First Question

    Hi Jue,

    This significantly reduces the solving time, thank you so much for your help!

    0

Please sign in to leave a comment.