I solve a MILP with Gurobi and then feed the optimal solution as warm start to the exact same model (plus a couple of lines where I provide the warm start) and solve it again expecting to see a good decrease in runtime. This, however, does not happen and I get longer runtimes. I notice that Gurobi is accepting the provided warm start since the incumbent obj is the optimal objective from the beginning but somehow this is not helping to reduce the runtime.
I recognize that even with the optimal solution provided as warm start, Gurobi still needs to prove optimality, but I still expected an improvement in runtime. All my paraemeters are set to default except Threads = 1. I am putting the logs of the two problems below for reference. Any help is much appreciated!
Set parameter Threads to value 1
Gurobi Optimizer version 9.5.0 build v9.5.0rc5 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 1 threads
Optimize a model with 2007 rows, 1423 columns and 10414 nonzeros
Model fingerprint: 0x72a7f3b4
Variable types: 803 continuous, 620 integer (620 binary)
Coefficient statistics:
Matrix range [6e-07, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
Presolve removed 4 rows and 4 columns
Presolve time: 0.05s
Presolved: 2003 rows, 1419 columns, 10406 nonzeros
Variable types: 3 continuous, 1416 integer (1416 binary)
Found heuristic solution: objective 85.0000000
Root relaxation: objective 0.000000e+00, 536 iterations, 0.01 seconds (0.02 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.00000 0 172 85.00000 0.00000 100% - 0s
H 0 0 83.0000000 0.00000 100% - 0s
0 0 0.00000 0 224 83.00000 0.00000 100% - 0s
H 0 0 80.0000000 0.00000 100% - 0s
0 0 0.00000 0 210 80.00000 0.00000 100% - 0s
0 0 0.00000 0 183 80.00000 0.00000 100% - 0s
0 0 0.00000 0 236 80.00000 0.00000 100% - 0s
0 0 0.00000 0 197 80.00000 0.00000 100% - 0s
0 0 0.00000 0 279 80.00000 0.00000 100% - 0s
0 0 0.00000 0 247 80.00000 0.00000 100% - 0s
0 0 0.00000 0 183 80.00000 0.00000 100% - 0s
0 2 0.00000 0 183 80.00000 0.00000 100% - 0s
H 271 136 78.0000000 0.00000 100% 55.0 1s
885 436 50.30817 26 244 78.00000 0.00000 100% 55.0 5s
H 1067 432 75.0000000 0.00000 100% 75.6 5s
H 1080 416 74.0000000 0.00000 100% 76.7 6s
H 1135 411 73.0000000 0.00000 100% 76.8 6s
H 1746 470 72.0000000 0.00000 100% 79.4 8s
2210 598 4.13758 18 276 72.00000 0.00000 100% 80.2 10s
3306 1062 0.76078 23 350 72.00000 0.00000 100% 81.5 15s
5140 1647 2.74069 17 238 72.00000 0.53179 99.3% 78.7 20s
7618 2317 64.58297 30 95 72.00000 1.34231 98.1% 76.3 25s
10202 2976 cutoff 30 72.00000 2.46951 96.6% 74.8 33s
10905 3119 25.69093 21 228 72.00000 2.78814 96.1% 74.3 35s
13955 3828 4.04720 21 268 72.00000 3.96038 94.5% 71.7 40s
H15714 4160 71.0000000 4.56090 93.6% 70.8 43s
16542 4323 cutoff 29 71.00000 4.93327 93.1% 70.1 45s
19700 4921 cutoff 35 71.00000 6.27039 91.2% 68.5 50s
22530 5484 42.10248 29 214 71.00000 7.24928 89.8% 67.3 55s
25912 6020 45.12244 26 135 71.00000 8.48257 88.1% 65.7 60s
28655 6418 9.54349 26 246 71.00000 9.54349 86.6% 64.9 65s
32182 6928 29.91972 24 209 71.00000 11.16363 84.3% 63.8 70s
35707 7418 68.81075 30 63 71.00000 12.86779 81.9% 62.6 75s
39418 7917 68.51171 30 62 71.00000 14.54239 79.5% 61.4 80s
43044 8400 16.95940 26 281 71.00000 15.99465 77.5% 60.5 85s
46851 8911 63.35777 35 92 71.00000 17.47185 75.4% 59.5 90s
50732 9349 24.96410 26 259 71.00000 18.76860 73.6% 58.6 95s
54846 9754 53.84988 30 138 71.00000 20.25105 71.5% 57.7 100s
59034 10162 cutoff 27 71.00000 21.86202 69.2% 56.9 105s
63341 10590 23.63964 25 186 71.00000 23.35448 67.1% 56.0 110s
67791 11040 55.18601 27 67 71.00000 25.10738 64.6% 55.1 115s
72484 11424 cutoff 32 71.00000 26.60264 62.5% 54.2 120s
77110 11859 68.02626 32 75 71.00000 28.11140 60.4% 53.3 125s
81877 12303 39.00000 30 175 71.00000 29.49949 58.5% 52.6 130s
86646 12651 56.79191 27 100 71.00000 30.72545 56.7% 51.8 135s
H88254 12660 70.0000000 31.06847 55.6% 51.6 136s
90004 12735 cutoff 29 70.00000 31.48510 55.0% 51.3 140s
94712 13038 47.16076 25 133 70.00000 32.67649 53.3% 50.6 145s
99703 13362 67.70894 33 83 70.00000 33.79679 51.7% 49.9 150s
104838 13642 58.87825 25 50 70.00000 35.05599 49.9% 49.3 155s
109798 13974 68.00000 28 63 70.00000 36.10324 48.4% 48.8 160s
115195 14226 59.57943 35 106 70.00000 37.21187 46.8% 48.1 165s
120649 14479 42.37345 22 132 70.00000 38.37301 45.2% 47.6 170s
125744 14722 67.69983 41 85 70.00000 39.34237 43.8% 47.0 175s
130263 14855 cutoff 43 70.00000 40.27770 42.5% 46.5 180s
136084 15044 46.04586 37 99 70.00000 41.44483 40.8% 45.9 185s
142169 15345 58.99459 29 230 70.00000 42.46910 39.3% 45.2 190s
147471 15473 cutoff 38 70.00000 43.38751 38.0% 44.7 195s
152620 15614 67.35452 42 45 70.00000 44.26672 36.8% 44.3 200s
158697 15643 67.50959 39 60 70.00000 45.33469 35.2% 43.8 205s
164696 15696 48.43651 43 85 70.00000 46.33808 33.8% 43.3 210s
171069 15775 65.79559 29 60 70.00000 47.19855 32.6% 42.8 215s
177742 15799 56.70371 34 135 70.00000 48.13312 31.2% 42.2 220s
184110 15796 cutoff 32 70.00000 48.99305 30.0% 41.8 225s
190402 15770 63.90056 32 100 70.00000 49.82484 28.8% 41.4 230s
197127 15665 68.27773 32 147 70.00000 50.72251 27.5% 40.8 235s
203214 15521 53.33264 30 104 70.00000 51.45710 26.5% 40.4 240s
209923 15363 64.18582 34 57 70.00000 52.22346 25.4% 39.9 245s
216308 15162 68.01103 31 51 70.00000 53.00000 24.3% 39.5 250s
222460 14982 65.91176 28 67 70.00000 53.69521 23.3% 39.0 255s
228182 14647 63.24260 29 92 70.00000 54.42455 22.3% 38.7 260s
H231449 14080 69.0000000 54.82460 20.5% 38.4 262s
*231450 13351 34 68.0000000 54.82460 19.4% 38.4 262s
234062 13076 61.74865 33 51 68.00000 55.24207 18.8% 38.3 265s
241277 12350 62.63768 30 125 68.00000 56.19428 17.4% 37.9 270s
248802 11493 65.42340 31 55 68.00000 57.16884 15.9% 37.5 275s
256120 10499 64.95457 34 68 68.00000 58.21122 14.4% 37.1 280s
263843 9134 64.42189 28 62 68.00000 59.34642 12.7% 36.7 285s
271327 7305 62.32876 34 64 68.00000 60.81444 10.6% 36.2 290s
278667 5256 63.32775 28 116 68.00000 62.43572 8.18% 35.7 295s
284806 3090 cutoff 30 68.00000 64.13496 5.68% 35.3 300s
Cutting planes:
Learned: 19
Cover: 3
MIR: 3
Flow cover: 8
GUB cover: 16
Zero half: 2
Explored 289846 nodes (10145071 simplex iterations) in 302.82 seconds (390.98 work units)
Thread count was 1 (of 8 available processors)
Solution count 10: 68 69 70 ... 80
Optimal solution found (tolerance 1.00e-04)
Best objective 6.800000000000e+01, best bound 6.800000000000e+01, gap 0.0000%
Warm Start with Optimal Solution
Set parameter Threads to value 1
Gurobi Optimizer version 9.5.0 build v9.5.0rc5 (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 1 threads
Optimize a model with 2007 rows, 1423 columns and 10414 nonzeros
Model fingerprint: 0x699314de
Variable types: 803 continuous, 620 integer (620 binary)
Coefficient statistics:
Matrix range [6e-07, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
Loaded user MIP start with objective 68
Presolve removed 4 rows and 4 columns
Presolve time: 0.02s
Presolved: 2003 rows, 1419 columns, 10406 nonzeros
Variable types: 3 continuous, 1416 integer (1416 binary)
Root relaxation: objective 0.000000e+00, 536 iterations, 0.01 seconds (0.02 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.00000 0 172 68.00000 0.00000 100% - 0s
0 0 0.00000 0 237 68.00000 0.00000 100% - 0s
0 0 0.00000 0 297 68.00000 0.00000 100% - 0s
0 0 0.00000 0 230 68.00000 0.00000 100% - 0s
0 0 0.00000 0 238 68.00000 0.00000 100% - 0s
0 0 0.00000 0 248 68.00000 0.00000 100% - 0s
0 0 0.00000 0 261 68.00000 0.00000 100% - 0s
0 0 0.00000 0 183 68.00000 0.00000 100% - 0s
0 0 0.00000 0 294 68.00000 0.00000 100% - 0s
0 0 0.00000 0 256 68.00000 0.00000 100% - 0s
0 0 0.00000 0 256 68.00000 0.00000 100% - 0s
0 2 0.00000 0 173 68.00000 0.00000 100% - 0s
1024 484 32.67683 11 319 68.00000 0.00000 100% 84.9 5s
2183 652 0.00000 17 296 68.00000 0.00000 100% 88.0 10s
3337 1017 10.89244 21 284 68.00000 0.55968 99.2% 84.5 15s
5306 1650 43.33492 25 219 68.00000 1.55570 97.7% 78.4 20s
7649 2364 23.97120 23 209 68.00000 2.68805 96.0% 74.3 25s
10114 3071 41.02580 26 174 68.00000 3.48583 94.9% 70.2 30s
10686 3188 47.84724 28 218 68.00000 3.82815 94.4% 69.9 35s
13343 3784 12.50000 24 194 68.00000 5.00000 92.6% 67.0 40s
15995 4310 57.93998 27 82 68.00000 6.39319 90.6% 65.3 45s
18609 4850 cutoff 26 68.00000 7.53763 88.9% 64.1 50s
21768 5453 cutoff 37 68.00000 8.78233 87.1% 61.7 55s
24926 6112 45.24113 26 127 68.00000 9.68401 85.8% 59.9 60s
27955 6559 64.71627 41 60 68.00000 10.69394 84.3% 58.9 65s
30867 7009 42.37881 28 148 68.00000 11.64604 82.9% 58.0 70s
33931 7460 16.44213 30 302 68.00000 12.67173 81.4% 57.0 75s
36868 7832 41.73535 22 100 68.00000 13.78936 79.7% 56.2 80s
39883 8197 63.83754 39 121 68.00000 14.94241 78.0% 55.7 85s
43060 8559 58.58417 31 227 68.00000 15.92375 76.6% 55.0 90s
46091 8926 65.93782 41 129 68.00000 16.82282 75.3% 54.3 95s
49287 9262 62.31775 32 183 68.00000 18.00973 73.5% 53.9 100s
52614 9651 cutoff 33 68.00000 19.11029 71.9% 53.3 105s
55407 9892 60.51889 35 245 68.00000 19.98661 70.6% 53.1 110s
58524 10241 50.48396 33 113 68.00000 20.68376 69.6% 52.6 115s
61740 10531 29.80289 30 148 68.00000 21.65296 68.2% 52.2 120s
64760 10844 53.48754 29 67 68.00000 22.41490 67.0% 52.0 125s
67500 11113 32.76890 30 276 68.00000 23.06163 66.1% 51.8 130s
70505 11330 29.55188 32 198 68.00000 23.87610 64.9% 51.7 135s
73612 11613 cutoff 27 68.00000 24.54876 63.9% 51.6 140s
76891 11817 28.89811 27 272 68.00000 25.28002 62.8% 51.5 145s
80344 12064 36.08806 29 235 68.00000 26.21483 61.4% 51.2 150s
83832 12251 50.06738 27 189 68.00000 27.05425 60.2% 50.8 155s
87406 12432 46.94104 27 136 68.00000 27.82834 59.1% 50.6 160s
90858 12584 62.96521 45 55 68.00000 28.62816 57.9% 50.3 165s
94526 12726 35.80055 25 120 68.00000 29.40363 56.8% 50.0 170s
98525 12931 57.84673 39 211 68.00000 30.25805 55.5% 49.6 175s
102353 13133 47.14446 30 174 68.00000 30.96343 54.5% 49.2 180s
106370 13285 cutoff 31 68.00000 31.69662 53.4% 48.8 185s
110282 13417 50.20698 25 222 68.00000 32.45800 52.3% 48.4 190s
114171 13437 39.75648 27 216 68.00000 33.28513 51.1% 48.0 195s
118361 13525 35.79768 29 151 68.00000 34.07255 49.9% 47.6 200s
122522 13621 59.92191 32 129 68.00000 34.93383 48.6% 47.3 205s
126709 13691 38.00672 27 217 68.00000 35.82608 47.3% 47.0 210s
130825 13818 cutoff 30 68.00000 36.56427 46.2% 46.8 215s
134771 13811 63.17190 36 208 68.00000 37.37387 45.0% 46.5 220s
139167 13871 52.85681 28 157 68.00000 38.21258 43.8% 46.2 225s
143632 13887 61.90673 30 207 68.00000 38.95120 42.7% 45.9 230s
148287 13840 59.33192 35 87 68.00000 39.79500 41.5% 45.5 235s
153121 13818 48.43771 32 109 68.00000 40.66538 40.2% 45.2 240s
157884 13713 50.11820 33 134 68.00000 41.45230 39.0% 44.8 245s
162860 13619 cutoff 38 68.00000 42.34322 37.7% 44.5 250s
167311 13539 cutoff 30 68.00000 43.05374 36.7% 44.1 255s
172161 13400 50.38009 31 186 68.00000 43.91223 35.4% 43.8 260s
176329 13267 cutoff 33 68.00000 44.74201 34.2% 43.5 265s
181487 13090 63.09037 31 103 68.00000 45.66002 32.9% 43.2 270s
186744 12843 60.24570 32 152 68.00000 46.55304 31.5% 42.8 275s
192114 12618 60.38548 35 125 68.00000 47.51278 30.1% 42.5 280s
197721 12435 49.99977 33 124 68.00000 48.32484 28.9% 42.1 285s
203205 12133 65.52398 33 81 68.00000 49.09142 27.8% 41.8 290s
208936 11767 63.78670 39 46 68.00000 50.00000 26.5% 41.4 295s
214358 11458 60.70267 47 55 68.00000 50.76252 25.3% 41.1 300s
218932 11254 59.47012 33 79 68.00000 51.35794 24.5% 40.8 305s
223556 10878 56.40169 36 196 68.00000 52.04475 23.5% 40.5 310s
228787 10478 65.29288 38 36 68.00000 52.78745 22.4% 40.3 315s
233352 10047 56.27296 35 216 68.00000 53.47223 21.4% 40.0 320s
238767 9502 infeasible 34 68.00000 54.41626 20.0% 39.7 325s
243504 8893 cutoff 51 68.00000 55.24023 18.8% 39.4 330s
249657 8008 60.67709 30 187 68.00000 56.28146 17.2% 39.1 335s
255309 7118 61.76147 49 206 68.00000 57.34876 15.7% 38.7 340s
262094 5969 62.25019 33 107 68.00000 58.66567 13.7% 38.3 345s
268995 4563 cutoff 36 68.00000 60.34195 11.3% 37.8 350s
275452 2995 infeasible 26 68.00000 62.00000 8.82% 37.5 355s
281890 704 65.76587 37 72 68.00000 64.83833 4.65% 37.0 360s
Cutting planes:
Learned: 21
Cover: 13
Clique: 2
MIR: 9
StrongCG: 2
Flow cover: 31
GUB cover: 251
Inf proof: 1
Zero half: 15
Explored 283134 nodes (10465358 simplex iterations) in 360.83 seconds (468.72 work units)
Thread count was 1 (of 8 available processors)
Solution count 1: 68
Optimal solution found (tolerance 1.00e-04)
Best objective 6.800000000000e+01, best bound 6.800000000000e+01, gap 0.0000%
Comments
5 comments