Best Objective Bound Does not Change
AnsweredHi,
I have an MIP model. Although by looking at the output, I know that it has found the optimal solution very early, the best objective bound does not change, so the model is not able to prove optimality. Is there anything I can try to improve this? Below is the model log.
Gurobi 11.0.0 (win64) logging started Tue Mar 19 11:26:55 2024
Set parameter LogFile to value "-----------.txt"
Gurobi Optimizer version 11.0.0 build v11.0.0rc2 (win64 - Windows 11.0 (22621.2))
CPU model: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 92350 rows, 1052 columns and 539763 nonzeros
Model fingerprint: 0x7af0b745
Variable types: 41 continuous, 1011 integer (1011 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+06]
Objective range [5e-01, 2e+02]
Bounds range [1e+00, 1e+00]
RHS range [5e-01, 6e+06]
Presolve removed 48780 rows and 12 columns
Presolve time: 0.77s
Presolved: 43570 rows, 1040 columns, 251052 nonzeros
Variable types: 41 continuous, 999 integer (999 binary)
Found heuristic solution: objective 511.0000000
Root relaxation presolved: 1037 rows, 44607 columns, 252086 nonzeros
Root relaxation: objective 2.007683e+02, 530 iterations, 0.31 seconds (0.31 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 200.76829 0 3 511.00000 200.76829 60.7% - 2s
H 0 0 509.0000000 200.76829 60.6% - 2s
0 0 256.25000 0 151 509.00000 256.25000 49.7% - 3s
0 0 340.50000 0 117 509.00000 340.50000 33.1% - 5s
0 0 340.50000 0 116 509.00000 340.50000 33.1% - 5s
0 0 340.50000 0 74 509.00000 340.50000 33.1% - 5s
0 0 340.50000 0 74 509.00000 340.50000 33.1% - 6s
0 0 340.50000 0 48 509.00000 340.50000 33.1% - 6s
0 0 340.50000 0 49 509.00000 340.50000 33.1% - 7s
0 0 340.50000 0 18 509.00000 340.50000 33.1% - 8s
0 0 340.50000 0 21 509.00000 340.50000 33.1% - 8s
0 0 340.50000 0 15 509.00000 340.50000 33.1% - 9s
0 0 340.50000 0 16 509.00000 340.50000 33.1% - 9s
0 0 340.50000 0 13 509.00000 340.50000 33.1% - 9s
0 0 340.50000 0 13 509.00000 340.50000 33.1% - 9s
0 0 340.50000 0 14 509.00000 340.50000 33.1% - 10s
0 0 340.50000 0 14 509.00000 340.50000 33.1% - 10s
0 0 340.50000 0 14 509.00000 340.50000 33.1% - 10s
0 0 340.50000 0 14 509.00000 340.50000 33.1% - 11s
0 2 340.50000 0 14 509.00000 340.50000 33.1% - 12s
92 120 340.50000 16 32 509.00000 340.50000 33.1% 69.1 16s
206 248 340.50000 39 149 509.00000 340.50000 33.1% 118 23s
326 416 341.00000 47 64 509.00000 340.50000 33.1% 127 30s
557 640 340.50000 21 66 509.00000 340.50000 33.1% 129 37s
880 926 351.52229 90 90 509.00000 340.50000 33.1% 119 43s
1303 928 340.50000 10 10 509.00000 340.50000 33.1% 114 46s
1307 931 340.50000 16 28 509.00000 340.50000 33.1% 114 50s
1319 939 344.50000 61 24 509.00000 340.50000 33.1% 113 55s
1326 944 340.50774 39 8 509.00000 340.50000 33.1% 112 61s
1466 1092 340.50000 34 34 509.00000 340.50000 33.1% 13.5 65s
1577 1181 342.50717 49 81 509.00000 340.50000 33.1% 27.0 72s
1694 1314 345.00000 62 127 509.00000 340.50000 33.1% 37.4 78s
1938 1345 340.50000 45 26 509.00000 340.50000 33.1% 53.2 83s
2088 1429 341.00000 57 95 509.00000 340.50000 33.1% 66.7 89s
2290 1553 infeasible 76 509.00000 340.50000 33.1% 80.6 95s
2527 1707 340.50000 53 37 509.00000 340.50000 33.1% 93.0 103s
2863 1690 341.00000 49 206 509.00000 340.50000 33.1% 102 111s
3055 1717 348.50000 70 77 509.00000 340.50000 33.1% 108 120s
3196 1847 342.01075 60 99 509.00000 340.50000 33.1% 113 128s
3445 1958 340.50000 45 27 509.00000 340.50000 33.1% 120 137s
3716 2147 340.50000 46 36 509.00000 340.50000 33.1% 121 145s
4111 2216 340.50000 26 26 509.00000 340.50000 33.1% 125 155s
4397 2501 340.50191 53 33 509.00000 340.50000 33.1% 130 165s
4848 2558 infeasible 63 509.00000 340.50000 33.1% 133 175s
4943 2880 infeasible 95 509.00000 340.50000 33.1% 134 184s
5431 3063 342.16033 67 124 509.00000 340.50000 33.1% 136 193s
5694 3387 342.04499 73 101 509.00000 340.50000 33.1% 140 202s
6246 3478 340.50000 43 70 509.00000 340.50000 33.1% 142 213s
6410 3738 340.50000 44 48 509.00000 340.50000 33.1% 144 223s
6886 3921 352.02503 82 157 509.00000 340.50000 33.1% 149 232s
7233 4015 infeasible 58 509.00000 340.50000 33.1% 153 242s
7398 4105 342.50000 47 96 509.00000 340.50000 33.1% 158 253s
7627 4289 341.00000 46 101 509.00000 340.50000 33.1% 162 264s
7975 4434 340.51085 47 47 509.00000 340.50000 33.1% 168 276s
8250 4595 infeasible 68 509.00000 340.50000 33.1% 171 294s
8537 4876 infeasible 53 509.00000 340.50000 33.1% 173 308s
9018 5031 infeasible 53 509.00000 340.50000 33.1% 176 320s
9353 5194 340.55462 49 181 509.00000 340.50000 33.1% 185 334s
9668 5427 infeasible 65 509.00000 340.50000 33.1% 190 349s
10111 5659 infeasible 69 509.00000 340.50000 33.1% 195 364s
10461 5796 infeasible 57 509.00000 340.50000 33.1% 198 381s
10800 6238 341.00000 46 184 509.00000 340.50000 33.1% 201 410s
11687 6567 343.50449 55 127 509.00000 340.50000 33.1% 209 433s
12337 6827 349.00000 70 96 509.00000 340.50000 33.1% 214 454s
12898 7046 341.00000 53 233 509.00000 340.50000 33.1% 216 475s
13392 7154 340.50000 39 113 509.00000 340.50000 33.1% 220 499s
13588 7527 346.52054 64 175 509.00000 340.50000 33.1% 223 525s
14318 7826 340.54617 44 224 509.00000 340.50000 33.1% 227 551s
14911 7950 340.50000 46 35 509.00000 340.50000 33.1% 231 580s
15181 8330 infeasible 57 509.00000 340.50000 33.1% 234 614s
15378 8330 340.50000 37 50 509.00000 340.50000 33.1% 234 615s
15928 8639 342.56876 47 127 509.00000 340.50000 33.1% 237 639s
16603 9004 infeasible 65 509.00000 340.50000 33.1% 239 663s
17360 9389 infeasible 49 509.00000 340.50000 33.1% 241 686s
18086 9634 infeasible 62 509.00000 340.50000 33.1% 244 708s
18495 10028 341.00000 62 90 509.00000 340.50000 33.1% 245 732s
19231 10263 346.01877 75 170 509.00000 340.50000 33.1% 246 755s
19736 10627 infeasible 52 509.00000 340.50000 33.1% 248 778s
20376 10921 345.52559 60 193 509.00000 340.50000 33.1% 250 802s
20958 10922 340.50122 55 14 509.00000 340.50000 33.1% 252 808s
20960 10923 340.50000 19 9 509.00000 340.50000 33.1% 252 810s
20964 10926 343.51750 64 24 509.00000 340.50000 33.1% 252 815s
20973 10932 344.09754 50 29 509.00000 340.50000 33.1% 252 820s
20981 10937 343.97952 61 10 509.00000 340.50000 33.1% 252 827s
21048 11003 340.50000 34 34 509.00000 340.50000 33.1% 252 830s
21201 11147 341.00000 58 170 509.00000 340.50000 33.1% 251 838s
21271 11217 341.00000 67 176 509.00000 340.50000 33.1% 251 843s
21386 11360 341.00000 78 87 509.00000 340.50000 33.1% 252 850s
21620 11428 340.50000 46 42 509.00000 340.50000 33.1% 251 858s
21848 11450 infeasible 75 509.00000 340.50000 33.1% 251 867s
21976 11572 340.50000 56 32 509.00000 340.50000 33.1% 250 875s
22206 11720 342.56070 73 96 509.00000 340.50000 33.1% 249 885s
22565 11787 342.50000 69 25 509.00000 340.50000 33.1% 248 894s
22814 11818 infeasible 69 509.00000 340.50000 33.1% 247 907s
22998 12026 342.21153 68 199 509.00000 340.50000 33.1% 247 918s
23377 12088 340.50771 57 207 509.00000 340.50000 33.1% 246 929s
23701 12334 341.50000 70 129 509.00000 340.50000 33.1% 245 940s
24181 12333 341.08414 56 198 509.00000 340.50000 33.1% 244 951s
24420 12533 340.52195 49 132 509.00000 340.50000 33.1% 244 964s
24864 12534 342.00000 60 80 509.00000 340.50000 33.1% 244 975s
25085 12842 342.54015 72 82 509.00000 340.50000 33.1% 244 987s
25656 12827 349.50000 112 58 509.00000 340.50000 33.1% 242 1001s
26029 12945 infeasible 93 509.00000 340.50000 33.1% 242 1015s
26461 13102 345.00000 81 128 509.00000 340.50000 33.1% 241 1030s
26979 13215 347.00188 88 52 509.00000 340.50000 33.1% 241 1041s
27440 13356 344.53152 81 173 509.00000 340.50000 33.1% 241 1055s
27923 13291 343.01575 71 68 509.00000 340.50000 33.1% 241 1069s
28135 13500 344.52054 71 179 509.00000 340.50000 33.1% 241 1082s
28638 13940 340.50000 55 31 509.00000 340.50000 33.1% 241 1097s
29450 13860 345.50709 80 64 509.00000 340.50000 33.1% 240 1116s
29844 14124 347.57985 95 126 509.00000 340.50000 33.1% 240 1131s
30442 14117 341.00000 65 102 509.00000 340.50000 33.1% 240 1148s
30807 14319 341.50451 60 76 509.00000 340.50000 33.1% 239 1164s
31382 14384 347.03532 98 112 509.00000 340.50000 33.1% 240 1535s
31830 14925 infeasible 86 509.00000 340.50000 33.1% 240 1559s
32948 14999 341.00000 51 42 509.00000 340.50000 33.1% 240 1576s
33714 14964 340.50203 71 205 509.00000 340.50000 33.1% 239 1592s
34080 15140 343.26434 71 209 509.00000 340.50000 33.1% 239 1608s
34722 15273 343.54373 62 311 509.00000 340.50000 33.1% 239 1624s
35298 15240 infeasible 58 509.00000 340.50000 33.1% 239 1640s
35575 15338 346.33333 67 146 509.00000 340.50000 33.1% 240 1656s
35984 15402 infeasible 65 509.00000 340.50000 33.1% 241 1674s
36433 15488 340.50582 48 149 509.00000 340.50000 33.1% 242 1694s
36881 15690 340.50000 45 76 509.00000 340.50000 33.1% 242 1713s
37481 15859 347.02104 88 73 509.00000 340.50000 33.1% 242 1731s
38118 16012 340.50135 66 71 509.00000 340.50000 33.1% 242 1750s
38781 15962 349.01736 68 106 509.00000 340.50000 33.1% 242 1776s
39098 16078 infeasible 69 509.00000 340.50000 33.1% 242 1794s
39644 16297 341.34721 56 317 509.00000 340.50000 33.1% 243 1811s
40331 16107 340.50000 59 49 509.00000 340.50000 33.1% 244 1831s
40424 16396 340.50000 60 51 509.00000 340.50000 33.1% 244 1849s
41052 16462 346.51613 69 170 509.00000 340.50000 33.1% 245 1870s
41677 16608 340.55870 57 290 509.00000 340.50000 33.1% 245 1888s
42294 16708 342.75870 66 237 509.00000 340.50000 33.1% 245 1921s
42885 16813 infeasible 68 509.00000 340.50000 33.1% 246 1943s
43463 16888 infeasible 75 509.00000 340.50000 33.1% 247 1965s
43951 17047 342.59498 67 113 509.00000 340.50000 33.1% 248 1991s
44634 17165 342.01409 53 98 509.00000 340.50000 33.1% 249 2013s
45255 17105 341.00000 50 70 509.00000 340.50000 33.1% 250 2036s
45532 17337 infeasible 64 509.00000 340.50000 33.1% 250 2059s
46248 17384 infeasible 63 509.00000 340.50000 33.1% 251 2080s
46899 17442 342.00671 56 250 509.00000 340.50000 33.1% 253 2104s
47395 17535 343.50000 64 201 509.00000 340.50000 33.1% 254 2134s
47971 17518 344.03202 67 85 509.00000 340.50000 33.1% 254 2155s
48282 17686 infeasible 74 509.00000 340.50000 33.1% 255 2175s
48851 17799 346.75000 54 77 509.00000 340.50000 33.1% 256 2201s
49392 17901 infeasible 79 509.00000 340.50000 33.1% 258 2221s
49912 18020 343.53971 59 221 509.00000 340.50000 33.1% 259 2242s
50510 18020 343.50000 64 104 509.00000 340.50000 33.1% 260 2262s
50980 18080 340.50000 49 166 509.00000 340.50000 33.1% 261 2283s
51418 18336 341.50000 56 57 509.00000 340.50000 33.1% 261 2305s
52244 18300 342.00000 60 173 509.00000 340.50000 33.1% 262 2324s
52777 18527 340.50000 48 82 509.00000 340.50000 33.1% 262 2344s
53554 18444 infeasible 63 509.00000 340.50000 33.1% 262 2365s
54016 18636 340.50000 54 57 509.00000 340.50000 33.1% 262 2385s
54499 19121 341.01146 51 97 509.00000 340.50000 33.1% 263 2405s
55318 19332 344.00000 74 143 509.00000 340.50000 33.1% 263 2425s
55775 19504 340.50000 51 114 509.00000 340.50000 33.1% 264 2447s
56129 19913 341.00000 74 105 509.00000 340.50000 33.1% 264 2467s
56942 20157 343.00000 62 94 509.00000 340.50000 33.1% 264 2495s
57614 20488 340.50000 45 25 509.00000 340.50000 33.1% 265 2514s
58317 20813 341.00000 52 121 509.00000 340.50000 33.1% 265 2533s
58882 20948 340.50057 56 129 509.00000 340.50000 33.1% 266 2553s
59141 21271 infeasible 77 509.00000 340.50000 33.1% 267 2574s
59832 21536 340.52366 54 222 509.00000 340.50000 33.1% 267 2594s
60408 21878 infeasible 63 509.00000 340.50000 33.1% 268 2614s
61032 22231 343.56169 83 175 509.00000 340.50000 33.1% 269 2633s
61723 22485 infeasible 63 509.00000 340.50000 33.1% 269 2653s
62301 22696 341.00000 53 71 509.00000 340.50000 33.1% 269 2672s
62730 22920 349.10658 100 84 509.00000 340.50000 33.1% 270 2699s
63302 23095 infeasible 101 509.00000 340.50000 33.1% 270 2723s
63713 23453 341.00000 57 244 509.00000 340.50000 33.1% 270 2749s
64461 23715 infeasible 68 509.00000 340.50000 33.1% 270 2777s
65087 23981 344.25000 61 130 509.00000 340.50000 33.1% 271 2802s
65629 24263 340.50000 54 54 509.00000 340.50000 33.1% 271 2828s
66206 24467 infeasible 72 509.00000 340.50000 33.1% 271 2855s
66562 24793 infeasible 76 509.00000 340.50000 33.1% 271 2882s
67242 25108 341.00000 58 126 509.00000 340.50000 33.1% 272 2913s
67889 25428 347.00000 84 107 509.00000 340.50000 33.1% 273 2938s
68590 25655 341.00000 44 189 509.00000 340.50000 33.1% 273 2966s
69096 25892 infeasible 64 509.00000 340.50000 33.1% 274 2993s
69628 26158 341.02383 62 215 509.00000 340.50000 33.1% 274 3023s
70243 26332 341.05157 52 200 509.00000 340.50000 33.1% 274 3051s
70670 26627 infeasible 62 509.00000 340.50000 33.1% 275 3086s
71305 26997 infeasible 62 509.00000 340.50000 33.1% 275 3111s
72085 27289 342.52276 63 180 509.00000 340.50000 33.1% 276 3137s
72721 27552 341.00000 54 186 509.00000 340.50000 33.1% 276 3164s
73278 27837 infeasible 59 509.00000 340.50000 33.1% 276 3190s
73829 28166 infeasible 55 509.00000 340.50000 33.1% 276 3215s
74601 28351 infeasible 83 509.00000 340.50000 33.1% 276 3236s
74984 28627 343.50000 64 130 509.00000 340.50000 33.1% 277 3259s
75699 28739 infeasible 57 509.00000 340.50000 33.1% 277 3286s
75949 28961 infeasible 58 509.00000 340.50000 33.1% 278 3309s
76370 29215 340.70343 54 177 509.00000 340.50000 33.1% 278 3333s
76931 29570 340.50000 51 159 509.00000 340.50000 33.1% 278 3358s
77498 29766 343.02411 63 112 509.00000 340.50000 33.1% 279 3384s
77929 30135 341.00372 60 64 509.00000 340.50000 33.1% 280 3410s
78590 30399 346.50000 62 156 509.00000 340.50000 33.1% 280 3441s
79064 30797 344.75000 67 114 509.00000 340.50000 33.1% 281 3467s
79849 31018 infeasible 70 509.00000 340.50000 33.1% 281 3496s
80324 31213 340.50000 55 161 509.00000 340.50000 33.1% 282 3523s
80763 31428 341.54007 55 178 509.00000 340.50000 33.1% 283 3550s
81164 31611 infeasible 79 509.00000 340.50000 33.1% 284 3577s
81533 31831 infeasible 73 509.00000 340.50000 33.1% 284 3616s
82048 32069 342.59200 70 208 509.00000 340.50000 33.1% 285 3643s
82679 32287 340.50000 45 34 509.00000 340.50000 33.1% 286 3674s
83061 32553 340.56086 62 93 509.00000 340.50000 33.1% 287 3703s
83575 32685 341.03007 62 181 509.00000 340.50000 33.1% 287 3729s
83952 33009 infeasible 53 509.00000 340.50000 33.1% 288 3767s
84730 33266 infeasible 69 509.00000 340.50000 33.1% 290 3800s
85278 33427 342.00494 63 225 509.00000 340.50000 33.1% 291 3833s
85687 33751 341.02275 64 63 509.00000 340.50000 33.1% 292 3883s
86389 33972 infeasible 65 509.00000 340.50000 33.1% 293 3916s
86918 34224 infeasible 77 509.00000 340.50000 33.1% 294 3952s
87457 34471 infeasible 82 509.00000 340.50000 33.1% 295 3987s
87997 34683 341.50000 51 114 509.00000 340.50000 33.1% 296 4025s
88481 34973 344.52089 65 105 509.00000 340.50000 33.1% 297 4063s
89059 35342 345.02761 65 171 509.00000 340.50000 33.1% 298 4101s
89882 35599 340.64976 57 237 509.00000 340.50000 33.1% 299 4137s
90462 35943 infeasible 64 509.00000 340.50000 33.1% 299 4177s
91166 36175 infeasible 66 509.00000 340.50000 33.1% 301 4215s
91713 36473 341.00000 51 206 509.00000 340.50000 33.1% 301 4251s
92295 36736 344.04501 63 128 509.00000 340.50000 33.1% 303 4289s
92754 36977 infeasible 57 509.00000 340.50000 33.1% 303 4327s
93355 37150 341.52091 68 192 509.00000 340.50000 33.1% 304 4374s
93656 37150 344.52372 88 101 509.00000 340.50000 33.1% 305 4375s
93800 37288 342.00000 51 198 509.00000 340.50000 33.1% 305 4401s
94124 37526 infeasible 61 509.00000 340.50000 33.1% 305 4452s
94736 37907 infeasible 67 509.00000 340.50000 33.1% 306 4502s
95587 38172 340.58613 53 181 509.00000 340.50000 33.1% 307 4542s
96177 38377 340.50000 55 300 509.00000 340.50000 33.1% 308 4584s
96716 38754 342.50000 63 133 509.00000 340.50000 33.1% 309 4626s
97549 39138 340.50000 43 75 509.00000 340.50000 33.1% 309 4667s
98375 39436 341.00000 66 124 509.00000 340.50000 33.1% 310 4709s
98955 39843 340.53001 48 103 509.00000 340.50000 33.1% 310 4744s
99756 40058 340.50000 52 126 509.00000 340.50000 33.1% 311 4796s
100337 40422 345.00000 66 81 509.00000 340.50000 33.1% 311 4830s
101165 40764 341.56006 75 84 509.00000 340.50000 33.1% 311 4866s
101811 41055 345.03558 69 183 509.00000 340.50000 33.1% 312 4899s
102127 41055 340.50000 52 58 509.00000 340.50000 33.1% 312 4900s
102463 41384 341.02578 53 182 509.00000 340.50000 33.1% 312 4936s
103186 41658 342.50000 58 83 509.00000 340.50000 33.1% 312 4970s
103823 41786 infeasible 47 509.00000 340.50000 33.1% 312 5011s
104157 42043 341.03102 62 122 509.00000 340.50000 33.1% 313 5038s
104780 42303 infeasible 56 509.00000 340.50000 33.1% 313 5065s
105288 42471 348.50000 82 102 509.00000 340.50000 33.1% 313 5103s
105710 42717 341.00000 46 190 509.00000 340.50000 33.1% 313 5133s
106228 43158 340.50000 45 102 509.00000 340.50000 33.1% 313 5166s
107146 43315 343.55240 60 111 509.00000 340.50000 33.1% 313 5196s
107561 43626 infeasible 74 509.00000 340.50000 33.1% 313 5224s
108275 43855 345.50070 63 241 509.00000 340.50000 33.1% 314 5262s
108799 44120 infeasible 74 509.00000 340.50000 33.1% 314 5293s
109338 44392 340.50000 45 40 509.00000 340.50000 33.1% 314 5324s
109995 44653 341.00000 53 175 509.00000 340.50000 33.1% 314 5356s
110604 44882 341.00000 47 148 509.00000 340.50000 33.1% 314 5386s
111147 45189 343.58377 57 95 509.00000 340.50000 33.1% 315 5414s
111621 45189 343.50866 68 143 509.00000 340.50000 33.1% 315 5415s
111782 45474 341.75000 51 87 509.00000 340.50000 33.1% 315 5445s
112346 45759 343.00000 56 101 509.00000 340.50000 33.1% 315 5476s
112931 46105 341.06716 43 260 509.00000 340.50000 33.1% 315 5506s
113762 46384 344.00908 55 94 509.00000 340.50000 33.1% 315 5555s
114444 46537 341.02833 48 146 509.00000 340.50000 33.1% 315 5583s
114829 46927 340.50000 39 100 509.00000 340.50000 33.1% 315 5626s
115689 47391 340.50865 44 112 509.00000 340.50000 33.1% 315 5659s
116583 47588 infeasible 56 509.00000 340.50000 33.1% 315 5688s
117046 47802 343.14497 60 202 509.00000 340.50000 33.1% 315 5718s
117496 48076 340.54817 63 104 509.00000 340.50000 33.1% 315 5750s
118078 48298 341.51431 54 86 509.00000 340.50000 33.1% 315 5778s
118701 48609 341.00000 51 95 509.00000 340.50000 33.1% 316 5808s
119350 48834 infeasible 54 509.00000 340.50000 33.1% 316 5838s
119863 49119 342.00447 55 72 509.00000 340.50000 33.1% 316 5869s
120376 49520 343.52037 49 116 509.00000 340.50000 33.1% 316 5900s
121163 49806 infeasible 56 509.00000 340.50000 33.1% 316 5931s
121821 50149 340.50115 49 83 509.00000 340.50000 33.1% 316 5963s
122368 50494 341.00000 65 120 509.00000 340.50000 33.1% 316 6006s
123132 50806 341.00000 63 156 509.00000 340.50000 33.1% 316 6036s
123817 51015 341.25000 58 115 509.00000 340.50000 33.1% 316 6068s
124304 51319 343.50448 55 144 509.00000 340.50000 33.1% 316 6099s
125080 51440 infeasible 72 509.00000 340.50000 33.1% 316 6130s
125441 51926 infeasible 52 509.00000 340.50000 33.1% 316 6177s
126489 52304 340.53409 57 115 509.00000 340.50000 33.1% 316 6210s
127243 52448 341.01421 53 175 509.00000 340.50000 33.1% 317 6243s
127529 52755 340.51102 55 221 509.00000 340.50000 33.1% 317 6274s
128292 53091 infeasible 59 509.00000 340.50000 33.1% 317 6303s
128933 53277 343.50000 67 92 509.00000 340.50000 33.1% 317 6335s
129364 53539 342.50000 60 176 509.00000 340.50000 33.1% 317 6387s
129957 53833 344.00000 59 73 509.00000 340.50000 33.1% 317 6426s
130713 54147 341.00000 48 114 509.00000 340.50000 33.1% 317 6454s
131365 54486 infeasible 64 509.00000 340.50000 33.1% 317 6484s
132059 54667 340.50000 55 39 509.00000 340.50000 33.1% 317 6515s
132449 54794 342.75000 56 190 509.00000 340.50000 33.1% 317 6545s
132785 55070 341.00000 48 153 509.00000 340.50000 33.1% 317 6576s
133434 55348 infeasible 59 509.00000 340.50000 33.1% 317 6607s
134088 55610 341.00000 55 146 509.00000 340.50000 33.1% 318 6637s
134665 55837 340.53569 51 303 509.00000 340.50000 33.1% 318 6666s
135091 56165 342.50513 60 93 509.00000 340.50000 33.1% 318 6694s
135757 56275 340.50000 47 202 509.00000 340.50000 33.1% 318 6730s
135978 57298 342.25000 63 186 509.00000 340.50000 33.1% 319 6900s
138097 57498 341.00000 63 108 509.00000 340.50000 33.1% 319 6933s
138475 57682 infeasible 64 509.00000 340.50000 33.1% 319 6967s
138923 57958 340.51698 54 178 509.00000 340.50000 33.1% 319 6998s
139451 58168 343.03260 59 277 509.00000 340.50000 33.1% 319 7028s
140002 58340 infeasible 62 509.00000 340.50000 33.1% 320 7059s
140450 58591 343.75000 68 158 509.00000 340.50000 33.1% 320 7090s
141005 58786 infeasible 61 509.00000 340.50000 33.1% 320 7122s
141515 58974 340.50000 52 80 509.00000 340.50000 33.1% 321 7159s
141877 59312 340.50000 40 123 509.00000 340.50000 33.1% 321 7192s
142599 59422 infeasible 67 509.00000 340.50000 33.1% 321 7223s
142925 59783 infeasible 59 509.00000 340.50000 33.1% 322 7253s
143598 60108 340.50939 52 242 509.00000 340.50000 33.1% 322 7285s
144419 60327 342.58173 71 190 509.00000 340.50000 33.1% 322 7318s
144928 60627 infeasible 73 509.00000 340.50000 33.1% 322 7351s
145620 60834 infeasible 62 509.00000 340.50000 33.1% 322 7383s
146065 61051 infeasible 60 509.00000 340.50000 33.1% 323 7411s
146603 61411 341.50000 54 183 509.00000 340.50000 33.1% 323 7445s
147354 61564 340.50000 45 74 509.00000 340.50000 33.1% 323 7474s
147675 61844 342.75647 66 142 509.00000 340.50000 33.1% 323 7506s
148281 62182 infeasible 48 509.00000 340.50000 33.1% 324 7539s
148969 62350 340.50000 56 229 509.00000 340.50000 33.1% 324 7570s
149388 62593 345.00000 58 117 509.00000 340.50000 33.1% 324 7604s
149932 62744 340.50000 44 68 509.00000 340.50000 33.1% 324 7640s
150317 63112 340.51202 54 211 509.00000 340.50000 33.1% 325 7673s
151117 63331 341.00000 67 58 509.00000 340.50000 33.1% 325 7708s
151646 63576 infeasible 81 509.00000 340.50000 33.1% 325 7741s
152280 63916 342.00482 68 126 509.00000 340.50000 33.1% 325 7778s
153046 64216 341.00000 47 162 509.00000 340.50000 33.1% 325 7811s
153696 64510 349.00000 78 62 509.00000 340.50000 33.1% 325 7844s
154286 64684 infeasible 64 509.00000 340.50000 33.1% 326 7878s
154696 64920 340.50000 53 111 509.00000 340.50000 33.1% 326 7910s
155212 65193 343.00350 60 72 509.00000 340.50000 33.1% 327 7945s
155781 65493 343.03711 68 108 509.00000 340.50000 33.1% 327 7978s
156597 65746 343.22399 74 109 509.00000 340.50000 33.1% 327 8050s
157151 66022 341.01160 52 136 509.00000 340.50000 33.1% 327 8082s
157809 66276 infeasible 60 509.00000 340.50000 33.1% 327 8114s
158385 66475 342.00502 56 122 509.00000 340.50000 33.1% 327 8145s
158908 66745 340.50000 48 181 509.00000 340.50000 33.1% 327 8177s
159468 66959 344.25000 64 156 509.00000 340.50000 33.1% 327 8208s
160092 67170 infeasible 70 509.00000 340.50000 33.1% 327 8240s
160640 67496 341.00000 56 116 509.00000 340.50000 33.1% 328 8273s
161409 67742 341.50000 55 104 509.00000 340.50000 33.1% 328 8307s
161959 67994 343.50000 72 131 509.00000 340.50000 33.1% 328 8339s
162525 68226 341.53795 57 113 509.00000 340.50000 33.1% 328 8372s
163057 68475 345.37500 63 183 509.00000 340.50000 33.1% 328 8404s
163696 68761 341.00326 59 218 509.00000 340.50000 33.1% 328 8437s
164320 69034 345.50000 67 276 509.00000 340.50000 33.1% 328 8470s
165002 69183 344.00000 67 96 509.00000 340.50000 33.1% 328 8502s
165395 69382 infeasible 61 509.00000 340.50000 33.1% 328 8569s
165901 69634 341.02365 59 129 509.00000 340.50000 33.1% 328 8599s
166520 69869 342.05520 54 254 509.00000 340.50000 33.1% 329 8632s
166975 70093 340.50000 54 31 509.00000 340.50000 33.1% 329 8665s
167631 70312 341.00000 55 126 509.00000 340.50000 33.1% 329 8692s
168174 70561 343.02990 51 141 509.00000 340.50000 33.1% 329 8722s
168621 70770 infeasible 67 509.00000 340.50000 33.1% 329 8752s
169195 71121 341.00000 55 36 509.00000 340.50000 33.1% 329 8783s
170097 71378 341.00000 51 96 509.00000 340.50000 33.1% 329 8812s
170654 71574 340.51662 57 86 509.00000 340.50000 33.1% 329 8841s
171122 71703 345.03906 72 118 509.00000 340.50000 33.1% 329 8874s
171425 71967 344.54565 60 186 509.00000 340.50000 33.1% 329 8903s
172103 72192 340.56856 51 269 509.00000 340.50000 33.1% 329 8931s
172610 72447 342.00000 55 125 509.00000 340.50000 33.1% 330 8961s
173185 72658 infeasible 51 509.00000 340.50000 33.1% 330 9024s
173709 72880 342.04863 54 137 509.00000 340.50000 33.1% 330 9054s
174231 73098 341.33333 52 94 509.00000 340.50000 33.1% 330 9085s
174783 73473 infeasible 71 509.00000 340.50000 33.1% 330 9119s
175587 73848 341.00000 55 67 509.00000 340.50000 33.1% 330 9151s
176336 74088 infeasible 59 509.00000 340.50000 33.1% 330 9182s
176836 74375 341.02154 60 70 509.00000 340.50000 33.1% 330 9212s
177485 74511 infeasible 62 509.00000 340.50000 33.1% 330 9244s
177863 74944 infeasible 71 509.00000 340.50000 33.1% 331 9294s
178890 75180 340.50000 58 207 509.00000 340.50000 33.1% 331 9328s
179466 75330 341.00000 51 139 509.00000 340.50000 33.1% 331 9364s
179782 75611 341.00000 66 117 509.00000 340.50000 33.1% 331 9439s
180451 75841 344.12282 64 196 509.00000 340.50000 33.1% 331 9477s
180976 76029 340.54183 51 271 509.00000 340.50000 33.1% 331 9518s
181418 76234 340.55038 52 258 509.00000 340.50000 33.1% 331 9555s
181969 76578 346.00455 66 145 509.00000 340.50000 33.1% 332 9593s
182859 76838 347.01885 70 136 509.00000 340.50000 33.1% 331 9627s
183507 77094 340.50000 55 173 509.00000 340.50000 33.1% 332 9662s
184105 77450 infeasible 56 509.00000 340.50000 33.1% 332 9698s
184869 77685 341.50000 61 63 509.00000 340.50000 33.1% 332 9734s
185291 77685 infeasible 69 509.00000 340.50000 33.1% 332 9735s
185481 77813 341.00683 71 122 509.00000 340.50000 33.1% 332 9770s
185822 78280 341.75000 69 207 509.00000 340.50000 33.1% 332 9805s
186682 78487 infeasible 74 509.00000 340.50000 33.1% 332 9868s
187200 78774 346.00000 77 126 509.00000 340.50000 33.1% 332 9900s
187926 78892 infeasible 61 509.00000 340.50000 33.1% 333 9931s
188240 79379 340.50000 55 309 509.00000 340.50000 33.1% 333 9988s
189403 79697 340.50000 51 47 509.00000 340.50000 33.1% 333 10024s
190070 79955 infeasible 69 509.00000 340.50000 33.1% 333 10060s
190638 80205 infeasible 63 509.00000 340.50000 33.1% 333 10117s
191240 80500 340.62532 61 172 509.00000 340.50000 33.1% 333 10153s
191753 80829 340.53173 57 94 509.00000 340.50000 33.1% 333 10187s
192608 81071 341.25000 53 128 509.00000 340.50000 33.1% 333 10219s
193187 81352 infeasible 60 509.00000 340.50000 33.1% 333 10251s
193815 81527 infeasible 74 509.00000 340.50000 33.1% 333 10284s
194190 81843 infeasible 75 509.00000 340.50000 33.1% 334 10318s
194896 82021 341.00000 65 103 509.00000 340.50000 33.1% 334 10352s
195317 82347 infeasible 65 509.00000 340.50000 33.1% 334 10385s
196029 82605 infeasible 72 509.00000 340.50000 33.1% 334 10431s
196609 82784 344.51232 71 121 509.00000 340.50000 33.1% 334 10464s
196954 83029 infeasible 58 509.00000 340.50000 33.1% 334 10501s
197429 83345 infeasible 80 509.00000 340.50000 33.1% 334 10534s
198111 83561 infeasible 50 509.00000 340.50000 33.1% 335 10569s
198609 83792 345.05675 60 159 509.00000 340.50000 33.1% 335 10599s
199158 83897 infeasible 86 509.00000 340.50000 33.1% 335 10645s
199415 84223 341.00000 59 162 509.00000 340.50000 33.1% 335 10688s
200189 84535 340.50000 55 67 509.00000 340.50000 33.1% 335 10729s
200839 84875 346.50000 70 91 509.00000 340.50000 33.1% 335 10766s
201646 85077 345.50000 68 121 509.00000 340.50000 33.1% 335 10803s
202187 85346 344.53897 63 236 509.00000 340.50000 33.1% 336 10853s
202723 85522 342.62502 60 231 509.00000 340.50000 33.1% 336 10888s
203241 85784 infeasible 66 509.00000 340.50000 33.1% 336 10924s
203751 85784 345.01088 69 167 509.00000 340.50000 33.1% 336 10925s
203926 86094 341.61029 59 137 509.00000 340.50000 33.1% 336 10960s
204594 86326 infeasible 74 509.00000 340.50000 33.1% 336 10997s
205168 86521 341.00000 69 160 509.00000 340.50000 33.1% 336 11032s
205635 86733 infeasible 73 509.00000 340.50000 33.1% 337 11089s
206109 86958 345.60918 66 197 509.00000 340.50000 33.1% 337 11125s
206630 87191 340.50821 59 195 509.00000 340.50000 33.1% 337 11165s
207203 87483 340.52096 51 250 509.00000 340.50000 33.1% 337 11204s
207865 87733 341.00000 60 96 509.00000 340.50000 33.1% 337 11244s
208428 88165 infeasible 58 509.00000 340.50000 33.1% 337 11283s
209341 88322 341.00042 63 127 509.00000 340.50000 33.1% 337 11318s
209692 88677 340.59183 52 267 509.00000 340.50000 33.1% 337 11374s
210559 88943 342.00000 46 83 509.00000 340.50000 33.1% 338 11444s
211099 89295 342.01863 72 119 509.00000 340.50000 33.1% 338 11486s
212015 89445 infeasible 74 509.00000 340.50000 33.1% 338 11522s
212291 89738 342.50000 67 84 509.00000 340.50000 33.1% 338 11560s
212939 90067 347.53528 63 130 509.00000 340.50000 33.1% 338 11598s
213751 90320 341.03947 59 183 509.00000 340.50000 33.1% 338 11635s
214331 90558 346.00000 70 93 509.00000 340.50000 33.1% 339 11716s
214983 90799 infeasible 74 509.00000 340.50000 33.1% 339 11755s
215534 91121 341.00000 66 138 509.00000 340.50000 33.1% 339 11793s
216204 91299 341.51519 51 162 509.00000 340.50000 33.1% 339 11831s
216660 91569 infeasible 60 509.00000 340.50000 33.1% 339 11868s
217320 91809 infeasible 73 509.00000 340.50000 33.1% 339 11907s
217900 91828 infeasible 83 509.00000 340.50000 33.1% 340 11971s
217967 92047 347.00000 83 150 509.00000 340.50000 33.1% 340 12005s
218534 92199 344.00000 54 80 509.00000 340.50000 33.1% 340 12046s
218822 92523 341.03701 72 95 509.00000 340.50000 33.1% 340 12083s
219592 92842 341.00000 56 93 509.00000 340.50000 33.1% 340 12161s
220333 93021 341.51461 75 98 509.00000 340.50000 33.1% 340 12187s
220710 93170 341.00000 52 79 509.00000 340.50000 33.1% 340 12223s
221116 93460 342.58098 59 210 509.00000 340.50000 33.1% 340 12256s
221793 93644 344.00522 76 83 509.00000 340.50000 33.1% 341 12298s
222257 93916 infeasible 52 509.00000 340.50000 33.1% 341 12334s
222815 94239 347.25000 67 130 509.00000 340.50000 33.1% 341 12367s
223506 94478 infeasible 76 509.00000 340.50000 33.1% 341 12401s
224058 94725 infeasible 80 509.00000 340.50000 33.1% 341 12437s
224651 95022 infeasible 68 509.00000 340.50000 33.1% 341 12471s
225266 95349 349.75000 65 85 509.00000 340.50000 33.1% 341 12506s
225941 95481 341.50000 57 335 509.00000 340.50000 33.1% 341 12542s
226277 95708 340.50035 50 340 509.00000 340.50000 33.1% 342 12577s
226966 95882 346.50000 66 149 509.00000 340.50000 33.1% 342 12668s
227478 95918 infeasible 66 509.00000 340.50000 33.1% 342 12709s
227610 96285 infeasible 60 509.00000 340.50000 33.1% 342 12743s
228380 96595 345.66667 63 119 509.00000 340.50000 33.1% 342 12778s
229138 96875 340.51384 50 319 509.00000 340.50000 33.1% 342 12811s
229737 97075 infeasible 48 509.00000 340.50000 33.1% 342 12847s
230297 97354 341.02743 49 159 509.00000 340.50000 33.1% 342 12878s
230942 97506 342.51117 55 136 509.00000 340.50000 33.1% 342 12910s
231346 97874 341.00000 52 178 509.00000 340.50000 33.1% 342 12949s
232117 98259 341.00722 45 129 509.00000 340.50000 33.1% 342 12982s
232819 98292 infeasible 69 509.00000 340.50000 33.1% 342 13028s
232938 98553 341.00000 60 198 509.00000 340.50000 33.1% 342 13060s
233602 98816 infeasible 62 509.00000 340.50000 33.1% 342 13139s
234257 99022 infeasible 66 509.00000 340.50000 33.1% 342 13171s
234779 99292 340.50811 50 152 509.00000 340.50000 33.1% 342 13201s
235395 99550 343.52506 63 70 509.00000 340.50000 33.1% 342 13238s
235965 99743 341.17511 53 320 509.00000 340.50000 33.1% 342 13272s
236533 99943 342.00000 62 101 509.00000 340.50000 33.1% 342 13302s
237015 100201 342.02616 51 149 509.00000 340.50000 33.1% 342 13336s
237596 100424 341.01961 60 239 509.00000 340.50000 33.1% 343 13371s
238134 100533 infeasible 55 509.00000 340.50000 33.1% 343 13427s
238389 100867 341.00000 56 129 509.00000 340.50000 33.1% 342 13461s
239060 101148 341.53232 52 64 509.00000 340.50000 33.1% 342 13497s
239764 101528 340.60462 47 305 509.00000 340.50000 33.1% 342 13531s
240616 101823 343.00023 64 180 509.00000 340.50000 33.1% 342 13640s
241314 102090 340.50000 45 127 509.00000 340.50000 33.1% 342 13669s
241869 102274 342.00000 54 177 509.00000 340.50000 33.1% 342 13696s
242375 102458 340.50000 53 34 509.00000 340.50000 33.1% 342 13728s
242890 102703 341.00972 58 79 509.00000 340.50000 33.1% 342 13760s
243526 102809 infeasible 52 509.00000 340.50000 33.1% 342 13799s
243786 103112 341.00000 47 142 509.00000 340.50000 33.1% 343 13834s
244480 103362 344.02524 61 67 509.00000 340.50000 33.1% 343 13867s
245032 103638 infeasible 69 509.00000 340.50000 33.1% 343 13899s
245659 103905 343.54043 59 156 509.00000 340.50000 33.1% 343 13933s
246300 104068 341.00000 58 81 509.00000 340.50000 33.1% 343 13967s
246698 104280 infeasible 51 509.00000 340.50000 33.1% 343 14001s
247265 104523 infeasible 59 509.00000 340.50000 33.1% 343 14033s
247939 104730 infeasible 68 509.00000 340.50000 33.1% 343 14068s
248360 104985 343.51791 67 98 509.00000 340.50000 33.1% 343 14103s
249034 105140 343.33333 65 213 509.00000 340.50000 33.1% 343 14146s
249378 105410 infeasible 75 509.00000 340.50000 33.1% 343 14244s
250042 105708 341.01703 58 212 509.00000 340.50000 33.1% 343 14285s
250738 105895 340.50000 55 216 509.00000 340.50000 33.1% 343 14322s
251209 106091 341.00000 55 111 509.00000 340.50000 33.1% 344 14357s
251691 106372 341.00000 48 58 509.00000 340.50000 33.1% 344 14400s
Cutting planes:
Learned: 21
Gomory: 431
Lift-and-project: 384
Cover: 2
Implied bound: 225
MIR: 810
Mixing: 708
StrongCG: 9
Flow cover: 8808
Inf proof: 1340
Zero half: 24
RLT: 18
Relax-and-lift: 28
Explored 252380 nodes (86896435 simplex iterations) in 14400.65 seconds (17008.90 work units)
Thread count was 8 (of 8 available processors)
Solution count 2: 509 511
Time limit reached
Best objective 5.090000000000e+02, best bound 3.405000000000e+02, gap 33.1041%
-
Have you tried setting the MIPfocus parameter to 2 or 3? This setting encourages the solver to spend more time on improving the best bound. Other parameters to try are: Cuts to higher values and VarBranch=3 (strong branching)
You may also find the subsection titled "Lack of Progress in the Best Bound" of this paper useful: Practical guidelines for solving difficult mixed integer linear programs.
1 -
Simranjit,
I have tried changing MIPfocus parameter. I will try the other parameters. Thank you for the paper!
0
Please sign in to leave a comment.
Comments
2 comments