Note: Optimality gap for all the solvers are 0.1%; All the other parameters are default; The platform is MATLAB 2020b
Even though GUROBI provides better solution than that of MOSEK and CPLEX, its solution time is much lower than that of MOSEK and CPLEX. The MIQP problem is as following:
I guess the slower solving time may stem from the long root relaxation.
Could you please provide any suggestions for tunning the parameters or solving mode of GUROBI? Following is the GUROBI solving information:
Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (mac64) Thread count: 8 physical cores, 16 logical processors, using up to 16 threads Optimize a model with 96492 rows, 40704 columns and 330384 nonzeros Model fingerprint: 0xfcbb0052 Model has 384 quadratic objective terms Variable types: 32064 continuous, 8640 integer (8640 binary) Coefficient statistics: Matrix range [2e-01, 2e+04] Objective range [2e-02, 8e+00] QObjective range [2e+03, 2e+03] Bounds range [1e+00, 1e+00] RHS range [1e+00, 3e+06]
No start values specified in MIP start
Found heuristic solution: objective 4519759.5855 Presolve removed 67050 rows and 11205 columns Presolve time: 0.82s Presolved: 29442 rows, 29499 columns, 164082 nonzeros Presolved model has 384 quadratic objective terms Variable types: 21879 continuous, 7620 integer (7620 binary)
Root simplex log...
Iteration Objective Primal Inf. Dual Inf. Time 107700 3.1618395e+06 0.000000e+00 2.423230e+04 5s 141977 2.8613187e+06 0.000000e+00 9.628881e+03 10s 159095 2.8224688e+06 0.000000e+00 1.256773e+04 15s 174325 2.7782259e+06 0.000000e+00 1.053597e+04 20s 189292 2.7343561e+06 0.000000e+00 9.230604e+03 25s 204238 2.7196319e+06 0.000000e+00 8.636641e+03 30s 219670 2.6724761e+06 0.000000e+00 1.412663e+04 35s 232399 2.6313092e+06 0.000000e+00 8.135329e+03 40s 244563 2.5978751e+06 0.000000e+00 1.075950e+04 45s 255467 2.5830686e+06 0.000000e+00 7.466468e+03 50s 266225 2.5535575e+06 0.000000e+00 3.042182e+04 55s 275532 2.5463826e+06 0.000000e+00 7.780226e+03 60s 284697 2.5425229e+06 0.000000e+00 9.182279e+03 65s 293580 2.5354749e+06 0.000000e+00 1.398105e+04 70s 302181 2.5237613e+06 0.000000e+00 8.289566e+03 75s 311347 2.5090514e+06 0.000000e+00 9.696519e+03 80s 319666 2.5002595e+06 0.000000e+00 8.071407e+03 85s 327844 2.4944801e+06 0.000000e+00 7.656166e+03 90s 335599 2.4920601e+06 0.000000e+00 8.266899e+03 95s 343495 2.4884379e+06 0.000000e+00 7.530097e+03 100s 351109 2.4858823e+06 0.000000e+00 7.831430e+03 105s 359005 2.4764825e+06 0.000000e+00 7.317625e+03 110s 366055 2.4730619e+06 0.000000e+00 9.719391e+03 115s 373105 2.4702949e+06 0.000000e+00 8.866025e+03 120s 380860 2.4679840e+06 0.000000e+00 7.531656e+03 125s 388333 2.4639898e+06 0.000000e+00 7.967690e+03 130s 395947 2.4622089e+06 0.000000e+00 8.295247e+03 135s 403279 2.4588936e+06 0.000000e+00 3.378259e+04 140s 410047 2.4547470e+06 0.000000e+00 1.668496e+04 145s 417097 2.4502438e+06 0.000000e+00 7.325238e+03 150s 423865 2.4479380e+06 0.000000e+00 9.075344e+03 155s 430774 2.4453483e+06 0.000000e+00 7.931693e+03 160s 437824 2.4434848e+06 0.000000e+00 1.124068e+04 165s 444874 2.4411265e+06 0.000000e+00 7.205576e+03 170s 451642 2.4380249e+06 0.000000e+00 1.993734e+04 175s 458410 2.4351876e+06 0.000000e+00 1.087766e+04 180s 465037 2.4327190e+06 0.000000e+00 8.728082e+03 185s 472087 2.4274941e+06 0.000000e+00 8.525905e+03 190s 479278 2.4232843e+06 0.000000e+00 1.142129e+04 195s 486187 2.4189076e+06 0.000000e+00 9.204798e+03 200s 493237 2.4129778e+06 0.000000e+00 6.956072e+03 205s 500569 2.4070199e+06 0.000000e+00 1.333207e+04 210s 507510 2.3989939e+06 0.000000e+00 8.536691e+03 215s 514137 2.3972216e+06 0.000000e+00 1.416488e+04 220s 520905 2.3932145e+06 0.000000e+00 9.157140e+03 225s 527532 2.3880949e+06 0.000000e+00 7.867807e+03 230s 533877 2.3865922e+06 0.000000e+00 8.592409e+03 235s 540222 2.3841987e+06 0.000000e+00 9.780597e+03 240s 546426 2.3826269e+06 0.000000e+00 8.601621e+03 245s 553053 2.3698907e+06 0.000000e+00 7.389552e+03 250s 558975 2.3697431e+06 0.000000e+00 6.634589e+03 255s 565320 2.3676814e+06 0.000000e+00 1.413950e+04 260s 571524 2.3656247e+06 0.000000e+00 7.653701e+03 265s 577869 2.3635849e+06 0.000000e+00 7.580017e+03 270s 584073 2.3617829e+06 0.000000e+00 7.835401e+03 275s 590418 2.3564503e+06 0.000000e+00 8.775089e+03 280s 596764 2.3504195e+06 0.000000e+00 8.535462e+03 285s 603532 2.3429096e+06 0.000000e+00 7.458879e+03 290s 609878 2.3366863e+06 0.000000e+00 1.431712e+04 295s 616224 2.3165772e+06 0.000000e+00 8.301464e+03 300s 622569 2.3145375e+06 0.000000e+00 2.189699e+04 305s 629196 2.3132002e+06 0.000000e+00 1.454158e+04 310s 635682 2.3104804e+06 0.000000e+00 6.753712e+03 315s 642168 2.3080763e+06 0.000000e+00 1.416319e+04 320s 648513 2.3065537e+06 0.000000e+00 1.915734e+04 325s 654858 2.2986163e+06 0.000000e+00 1.296723e+04 330s 661062 2.2969191e+06 0.000000e+00 8.121040e+03 335s 667407 2.2920635e+06 0.000000e+00 2.504730e+04 340s 673752 2.2867899e+06 0.000000e+00 7.564333e+03 345s 679815 2.2792187e+06 0.000000e+00 1.035805e+04 350s 685878 2.2755747e+06 0.000000e+00 2.699358e+04 355s 691800 2.2745207e+06 0.000000e+00 7.443625e+03 360s 697581 2.2694107e+06 0.000000e+00 2.404597e+05 365s 703785 2.2677519e+06 0.000000e+00 8.876582e+03 370s 709848 2.2646340e+06 0.000000e+00 1.080324e+04 375s 715065 2.2607480e+06 0.000000e+00 9.316893e+03 380s 720705 2.2586187e+06 0.000000e+00 1.104085e+04 385s 726768 2.2560430e+06 0.000000e+00 1.838143e+05 390s 732549 2.2548909e+06 0.000000e+00 9.286830e+03 395s 738330 2.2538031e+06 0.000000e+00 6.933568e+03 400s 744253 2.2499681e+06 0.000000e+00 1.856548e+04 405s 749752 2.2497610e+06 0.000000e+00 3.462994e+04 410s 755392 2.2484234e+06 0.000000e+00 2.022091e+04 415s 760751 2.2462999e+06 0.000000e+00 7.603167e+03 420s 766391 2.2452210e+06 0.000000e+00 8.434201e+03 425s 772031 2.2427808e+06 0.000000e+00 5.097947e+05 430s Warning: 1 variables dropped from basis 778856 2.2030285e+06 0.000000e+00 3.167473e+05 435s 793478 1.2478573e+06 0.000000e+00 1.781553e+06 440s 805009 2.8786660e+05 0.000000e+00 1.482391e+07 445s 811247 6.4946147e+03 0.000000e+00 1.663538e+05 450s 815341 4.0270196e+03 0.000000e+00 1.803596e+05 455s 819016 3.1061212e+03 0.000000e+00 1.287679e+04 460s 822413 2.7174554e+03 0.000000e+00 1.819462e+03 465s 825800 2.5330401e+03 0.000000e+00 6.112820e+02 470s 829331 2.4365688e+03 0.000000e+00 1.101857e+02 475s 832020 2.5056048e+03 0.000000e+00 0.000000e+00 477s
Root relaxation: objective 2.505605e+03, 832020 iterations, 476.52 seconds
Nodes | Current Node | Objective Bounds | Work Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
H 0 0 2599.2977801 - - - 477s H 0 0 2586.7374746 - - - 477s H 0 0 2544.8485470 - - - 477s H 0 0 2544.7372682 - - - 477s H 0 0 2520.6028416 - - - 477s H 0 0 2505.8920714 - - - 477s 0 0 2505.60481 0 1813 2505.89207 2505.60481 0.01% - 477s
Explored 0 nodes (832020 simplex iterations) in 477.51 seconds Thread count was 16 (of 16 available processors)
Solution count 7: 2505.89 2520.6 2544.74 ... 4.51976e+06
Optimal solution found (tolerance 1.00e-03) Best objective 2.505892071376e+03, best bound 2.505604814249e+03, gap 0.0115%
479.302623 s
|
Comments
2 comments