メインコンテンツへスキップ

Gurobipy vs Pyomo Discrepancy

回答済み

コメント

4件のコメント

  • 正式なコメント
    Simranjit Kaur
    Gurobi Staff Gurobi Staff
    This post is more than three years old. Some information may not be up to date. For current information, please check the Gurobi Documentation or Knowledge Base. If you need more help, please create a new post in the community forum. Or why not try our AI Gurobot?.
  • Fraser MacMillan
    Gurobi-versary
    First Comment
    First Question

    Pyomo Output:

    Read LP format model from file C:\Users\FMACMI~1\AppData\Local\Temp\tmpiyrrwkzc.pyomo.lp
    Reading time = 0.02 seconds
    x6359: 3765 rows, 6354 columns, 15763 nonzeros
    Changed value of parameter nonConvex to 2
    Prev: -1 Min: -1 Max: 2 Default: -1
    Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
    Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
    Optimize a model with 3765 rows, 6354 columns and 15763 nonzeros
    Model fingerprint: 0xb2721db2
    Model has 3173 quadratic objective terms
    Coefficient statistics:
    Matrix range [1e-04, 2e+04]
    Objective range [0e+00, 0e+00]
    QObjective range [2e-01, 3e+04]
    Bounds range [1e+00, 1e+00]
    RHS range [2e-02, 7e+03]
    Presolve removed 363 rows and 384 columns
    Continuous model is non-convex -- solving as a MIP.
    Presolve removed 363 rows and 384 columns
    Presolve time: 0.01s
    Presolved: 9039 rows, 8789 columns, 29735 nonzeros
    Presolved model has 2818 bilinear constraint(s)
    Variable types: 8789 continuous, 0 integer (0 binary)
    Root relaxation: objective 1.026381e+08, 4902 iterations, 0.09 seconds
    Nodes | Current Node | Objective Bounds | Work
    Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
    0 0 1.0264e+08 0 6 - 1.0264e+08 - - 0s
    H 0 0 1.026380e+08 1.0264e+08 0.00% - 0s
    Explored 1 nodes (4902 simplex iterations) in 0.15 seconds
    Thread count was 12 (of 12 available processors)
    Solution count 1: 1.02638e+08
    Optimal solution found (tolerance 1.00e-04)
    Best objective 1.026380496757e+08, best bound 1.026380534995e+08, gap 0.0000%

    1
  • Fraser MacMillan
    Gurobi-versary
    First Comment
    First Question

    Gurobipy Output:

    Changed value of parameter nonConvex to 2
    Prev: -1 Min: -1 Max: 2 Default: -1
    Changed value of parameter QCPDual to 1
    Prev: 0 Min: 0 Max: 1 Default: 0
    Changed value of parameter TimeLimit to 480.0
    Prev: inf Min: 0.0 Max: inf Default: inf
    Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)
    Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
    Optimize a model with 3764 rows, 6353 columns and 15763 nonzeros
    Model fingerprint: 0x70d8dc90
    Model has 3173 quadratic objective terms
    Coefficient statistics:
    Matrix range [1e-04, 2e+04]
    Objective range [0e+00, 0e+00]
    QObjective range [2e-01, 3e+04]
    Bounds range [1e+00, 1e+00]
    RHS range [2e-02, 7e+03]
    Presolve time: 0.00s
    Barrier solved model in 0 iterations and 0.00 seconds
    Model is infeasible or unbounded

    1
  • Fraser MacMillan
    Gurobi-versary
    First Comment
    First Question

    Hey guys, figured out my fairly basic error. Pyomo defaults variables with no lower bound to inf whereas gurobipy defaults to lb=0.

    Stupid mistake easily overlooked, hope this helps someone in the future.

    1

投稿コメントは受け付けていません。