Matthias Miltenberger
Gurobi StaffGurobi Optimization Support Manager - Berlin, Germany
- 合計アクティビティ 1105
- 前回のアクティビティ
- メンバー登録日
- フォロー 0ユーザー
- フォロワー 0ユーザー
- 投票 50
- サブスクリプション 483
アクティビティの概要
Matthias Miltenbergerさんの最近のアクティビティ-
Matthias Miltenbergerさんがコメントを作成しました:
Hi John, You can query the IIS results by checking the variables attributes IISLB and IISUB. I hope that answers your question. Cheers,Matthias
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi Christian, I am afraid there is no easy way of "maximizing your thread usage". There are simply some parts of the solving process that can be parallelized better than others, and there are some ...
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi Yuan, Maybe it's a maximization problem, and that's why the values are different than you expected.You would need to share more details to provide a better answer. Cheers,Matthias
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi Timo, I may be missing something here, but why are you interested in explicitly removing those variables from the objective function? They will just be ignored when the model is read. File sizes...
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi! There have been indeed some updates to the tupledict and tuplelist implementations in version 11 to make them more Pythonic. Here's the list of updates: Release Notes for Gurobi 11.0 Our docume...
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi Selin, This is likely a problem with your LOCALE settings. Maybe you can fix the issue by trying export LC_ALL="en_US.UTF-8" before running the grbgetkey command (but this really depends on your...
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi Shesha, a=9 and b=32 is a perfectly valid solution to the problem. To enforce that Gurobi selects a solution that minimizes the remainder b, you need to specify exactly that and add b to your ob...
-
Matthias Miltenbergerさんがコメントを作成しました:
You can use our matrix-friendly API to get rid of most of the overhead when building these constraints: x = m.addMVar((num_works, num_experts), vtype=GRB.BINARY, name="x")z = m.addMVar((num_experts...
-
Matthias Miltenbergerさんがコメントを作成しました:
Hi! The problematic part of this model is this: for i in range(num_experts): for k in range(num_experts): if i != k: m.addConstr(z[i, k] == gp.quicksum(x[j, i] * x[j, k] for...
-
Matthias Miltenbergerさんがコメントを作成しました:
You could try using a different setting of parameter PreQLinearize for QUBOs. This should help with larger models. The gap is computed as usual. It's just the relative difference between the incumb...