Skip to main content

Need help understanding the output of Gurobi for an IP problem

Answered

Comments

5 comments

  • Jaromił Najman
    Gurobi Staff Gurobi Staff

    Hi Christos,

    Did you increase the number of PoolSolutions

    Could you please share the code you used to generate the different solutions?

    Best regards, 
    Jaromił

    0
  • Christos Kolomvakis
    Gurobi-versary
    First Comment
    First Question

    Hello,

    my apologies for not posting the code, here it is (in Julia):

    model = Model(() -> Gurobi.Optimizer(env))
    # set_silent(model)
    # set_optimizer_attribute(model, "OutputFlag", 0)
    # set_optimizer_attribute(model, "LogToConsole", 0)
    set_optimizer_attribute(model, "NonConvex", 2)
    @variable(model, y[1:m], Bin)
    @variable(model, h[1:r], Bin)
    @objective(model, Min, 3 - 2*y[2] - 2*y[4] - 2*y[5] + y[1] + y[2] + y[3] + y[4] + y[5])
    @constraints(model, begin
    h[2]/r <= y[1]
    y[1] <= h[2]
    h[2]/r <= y[3]
    y[3] <= h[2]
    (h[1]+h[3]+h[4])/r <= y[2]
    y[2] <= h[1] + h[3] + h[4]
    (h[1]+h[3]+h[4])/r <= y[5]
    y[5] <= h[1] + h[3] + h[4]
    (h[5]+h[3]+h[4])/r <= y[4]
    y[4] <= h[5] + h[3] + h[4]
    end)

    set_time_limit_sec(model,timelimit)
    JuMP.set_optimizer_attribute(model, "PoolSolutions", 20)
    JuMP.optimize!(model)

    println(JuMP.value.(h))
    println(JuMP.value.(y))

    I set the PoolSolutions to 20 but that did not seem to influence the result.

    Thanks for your quick response,
    Christos

    0
  • Jaromił Najman
    Gurobi Staff Gurobi Staff

    Hi Christos,

    I am not a JuMP user so I unfortunately cannot help much with your code. However, I tested your model and the setting in gurobipy. I used the poolsearch.py example to check how the PoolSolutions feature works. I used the below code

    import gurobipy as gp
    from gurobipy import GRB

    m = gp.Model()

    N = [1,2,3,4,5]

    y = m.addVars(N, vtype = GRB.BINARY, name="y")
    h = m.addVars(N, vtype = GRB.BINARY, name="h")

    m.setObjective(3 - 2*y[2] - 2*y[4] - 2*y[5] + y[1] + y[2] + y[3] + y[4] + y[5])

    r = 5

    m.addConstr(h[2] / r <= y[1])
    m.addConstr(y[1] <= h[2])
    m.addConstr(h[2] / r <= y[3])
    m.addConstr(y[3] <= h[2])
    m.addConstr((h[1] + h[3] + h[4])/r <= y[2])
    m.addConstr(y[2] <= h[1] + h[3] + h[4])
    m.addConstr((h[1] + h[3] + h[4])/r <= y[5])
    m.addConstr(y[5] <= h[1] + h[3] + h[4])
    m.addConstr((h[5] + h[3] + h[4])/r <= y[4])
    m.addConstr(y[4] <= h[5] + h[3] + h[4])

    # write a human readable model file to check whether the model is correct
    m.write("myLP.lp")

    # set parameters
    m.setParam("PoolSearchMode",2)
    m.setParam("PoolSolutions", 10)
    m.optimize()

    # get number of solutions
    nSolutions = m.SolCount

    # iterate over all solutions and print the objective
    # and variable values
    for e in range(nSolutions):
        m.setParam("SolutionNumber",e)
        print(f"obj: {m.PoolObjVal}")
        for i in N:
            print(f"{y[i].VarName}: {y[i].Xn}")
        for i in N:
            print(f"{h[i].VarName}: {h[i].Xn}")

        print("================================")

    When I run this code on my personal Mac using Gurobi v11 I get the solutions

    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: 0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: 1.0
    h[2]: 0.0
    h[3]: 1.0
    h[4]: 1.0
    h[5]: 1.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: -0.0
    h[2]: -0.0
    h[3]: -0.0
    h[4]: 1.0
    h[5]: -0.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: 1.0
    h[2]: -0.0
    h[3]: 1.0
    h[4]: -0.0
    h[5]: -0.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: 1.0
    h[2]: -0.0
    h[3]: -0.0
    h[4]: -0.0
    h[5]: 1.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: -0.0
    h[2]: -0.0
    h[3]: 1.0
    h[4]: -0.0
    h[5]: 0.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: -0.0
    h[2]: -0.0
    h[3]: 0.0
    h[4]: 1.0
    h[5]: 1.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: 1.0
    h[2]: -0.0
    h[3]: -0.0
    h[4]: 1.0
    h[5]: 0.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: -0.0
    h[2]: -0.0
    h[3]: 1.0
    h[4]: 1.0
    h[5]: -0.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: -0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: -0.0
    h[2]: -0.0
    h[3]: 1.0
    h[4]: -0.0
    h[5]: 1.0
    ================================
    obj: 0.0
    y[1]: 0.0
    y[2]: 1.0
    y[3]: 0.0
    y[4]: 1.0
    y[5]: 1.0
    h[1]: 1.0
    h[2]: 0.0
    h[3]: 1.0
    h[4]: 1.0
    h[5]: -0.0
    ================================

    You can see that the objective value and y variable values are always the same and the values for h variables change.

    I don't know how to replicate the Python code in JuMP but maybe someone else in the Community might help.

    Best regards, 
    Jaromił

    0
  • Christos Kolomvakis
    Gurobi-versary
    First Comment
    First Question

    Hello and thank you for your response,

    I will try study and try to replicate the example in JuMP.

    Kind regards,
    Christos

    0
  • Christos Kolomvakis
    Gurobi-versary
    First Comment
    First Question

    Alright it works! I must have made a mistake before to get the same result always.

    Thank you so much for your help,
    Christos

    0

Please sign in to leave a comment.