Skip to main content

MIP in Python seems frozen

Ongoing

Comments

2 comments

  • Jaromił Najman
    Gurobi Staff Gurobi Staff

    Hi Maria,

    Could you please share all log lines above the log snippet you posted?

    If possible, could you please share the model? Note that uploading files in the Community Forum is not possible but we discuss an alternative in Posting to the Community Forum.

    Best regards, 
    Jaromił

    0
  • Maria Fragoso
    First Comment
    First Question

    The lines above are:

    Gurobi Optimizer version 11.0.1 build v11.0.1rc0 (win64 - Windows 11.0 (22631.2))

    CPU model: AMD Ryzen 7 5700U with Radeon Graphics, instruction set [SSE2|AVX|AVX2]
    Thread count: 8 physical cores, 16 logical processors, using up to 16 threads

    Optimize a model with 1422530 rows, 1543061 columns and 16597064 nonzeros
    Model fingerprint: 0x339bf915 Variable types: 0 continuous, 1543061 integer (1543061 binary)
    Coefficient statistics:
    Matrix range [1e+00, 6e+00]
    Objective range [1e+00, 1e+00]
    Bounds range [1e+00, 1e+00]
    RHS range [1e+00, 6e+00]
    Found heuristic solution: objective -0.0000000
    Presolve removed 58932 rows and 8169 columns (presolve time = 6s) ...
    Presolve removed 66937 rows and 8169 columns (presolve time = 10s) ...
    Presolve removed 68830 rows and 8169 columns (presolve time = 15s) ...
    Presolve removed 142390 rows and 8169 columns (presolve time = 20s) ...
    Presolve removed 261380 rows and 8169 columns (presolve time = 25s) ...
    Presolve removed 261560 rows and 8169 columns (presolve time = 30s) ...
    Presolve removed 261560 rows and 8169 columns (presolve time = 35s) ...
    Presolve removed 260602 rows and 7211 columns
    Presolve time: 39.51s
    Presolved: 1161928 rows, 1535850 columns, 11442108 nonzeros
    Variable types: 0 continuous, 1535850 integer (1534947 binary)
    Deterministic concurrent LP optimizer: primal simplex, dual simplex, and barrier
    Showing barrier log only...

    Root barrier log...

    Elapsed ordering time = 5s
    Ordering time: 7.53s

    Barrier statistics:
    AA' NZ : 4.364e+06
    Factor NZ : 1.924e+07 (roughly 400 MB of memory)
    Factor Ops : 6.050e+09 (less than 1 second per iteration)
    Threads : 6
    Objective Residual
    Iter Primal Dual Primal Dual Compl Time
    0 9.05925552e+06 1.06000350e+05 1.58e+04 3.64e+00 1.08e+02 58s
    1 6.91942621e+06 9.46509765e+04 1.21e+04 3.76e+00 8.31e+01 59s
    2 3.31884434e+06 7.55344155e+04 5.94e+03 3.05e+00 4.29e+01 59s
    3 1.00316561e+06 4.75040837e+04 1.92e+03 8.87e-01 1.49e+01 59s
    4 9.03277954e+04 2.73134348e+04 1.80e+02 6.10e-02 1.42e+00 60s
    5 2.89727416e+04 2.17163746e+04 5.68e+01 1.85e-02 4.60e-01 60s
    6 1.43148016e+04 1.72479441e+04 2.74e+01 5.75e-03 2.27e-01 60s
    7 4.70770045e+03 1.25666392e+04 8.34e+00 1.18e-14 7.55e-02 61s
    8 2.50257003e+03 1.11603435e+04 4.04e+00 7.99e-15 4.17e-02 61s
    9 1.28115100e+03 8.29479624e+03 1.76e+00 7.72e-15 2.07e-02 61s
    10 9.77718496e+02 5.37353539e+03 1.14e+00 4.54e-15 1.18e-02 62s
    11 7.43886292e+02 2.86031323e+03 6.62e-01 2.41e-15 5.21e-03 62s
    12 5.96642539e+02 1.55142182e+03 3.38e-01 8.64e-16 2.02e-03 63s
    13 5.54823959e+02 1.16227929e+03 2.20e-01 7.73e-16 1.18e-03 63s
    14 5.42464613e+02 1.09611144e+03 1.80e-01 8.57e-16 1.02e-03 63s
    15 5.26641313e+02 8.53769873e+02 1.24e-01 6.56e-16 5.90e-04 64s
    16 5.19462615e+02 6.49770766e+02 8.86e-02 2.62e-16 2.62e-04 64s
    17 5.12364584e+02 5.75475557e+02 6.79e-02 2.01e-16 1.45e-04 64s
    18 5.06720131e+02 5.48044490e+02 5.33e-02 2.19e-16 1.01e-04 65s
    19 5.00269190e+02 5.09481422e+02 3.99e-02 8.71e-17 4.48e-05 65s
    20 4.83861816e+02 4.84884183e+02 4.27e-03 4.86e-17 4.59e-06 65s
    21 4.82006963e+02 4.82014950e+02 1.82e-05 6.24e-18 2.39e-08 66s
    22 4.81999996e+02 4.82000015e+02 1.82e-13 4.07e-15 2.39e-11 66s
    23 4.82000000e+02 4.82000000e+02 2.62e-13 4.10e-15 4.17e-17 67s

    Barrier solved model in 23 iterations and 66.59 seconds (107.59 work units)
    Optimal objective 4.82000000e+02

    Root crossover log...
    439 DPushes remaining with DInf 0.0000000e+00 67s
    0 DPushes remaining with DInf 0.0000000e+00 67s
    279855 PPushes remaining with PInf 0.0000000e+00 67s
    179483 PPushes remaining with PInf 0.0000000e+00 70s
    111212 PPushes remaining with PInf 0.0000000e+00 75s
    91146 PPushes remaining with PInf 1.0375202e-02 80s
    78004 PPushes remaining with PInf 0.0000000e+00 85s
    65633 PPushes remaining with PInf 0.0000000e+00 90s
    56309 PPushes remaining with PInf 0.0000000e+00 95s
    47233 PPushes remaining with PInf 0.0000000e+00 100s
    41800 PPushes remaining with PInf 0.0000000e+00 105s
    37247 PPushes remaining with PInf 0.0000000e+00 110s
    32418 PPushes remaining with PInf 8.4552750e-04 115s
    27504 PPushes remaining with PInf 0.0000000e+00 120s
    23827 PPushes remaining with PInf 0.0000000e+00 125s
    18879 PPushes remaining with PInf 0.0000000e+00 130s
    15078 PPushes remaining with PInf 0.0000000e+00 135s
    10451 PPushes remaining with PInf 0.0000000e+00 141s
    6627 PPushes remaining with PInf 0.0000000e+00 146s
    3611 PPushes remaining with PInf 0.0000000e+00 151s
    927 PPushes remaining with PInf 0.0000000e+00 155s
    0 PPushes remaining with PInf 0.0000000e+00 157s

    Push phase complete: Pinf 0.0000000e+00, Dinf 1.3268177e-09 157s

    Root simplex log...
    Iteration Objective Primal Inf. Dual Inf. Time
    280284 4.8200000e+02 0.000000e+00 0.000000e+00 157s
    Concurrent spin time: 10.74s

    Solved with dual simplex

    Root simplex log...

    Iteration Objective Primal Inf. Dual Inf. Time
    86188 4.8200000e+02 0.000000e+00 0.000000e+00 168s

    Use crossover to convert LP symmetric solution to basic solution...

    Root crossover log...

    2 DPushes remaining with DInf 0.0000000e+00 169s
    65683 PPushes remaining with PInf 0.0000000e+00 170s
    50406 PPushes remaining with PInf 0.0000000e+00 170s
    849 PPushes remaining with PInf 0.0000000e+00 175s
    0 PPushes remaining with PInf 0.0000000e+00 175s

    Push phase complete: Pinf 0.0000000e+00, Dinf 7.6885253e-11 175s

    Root simplex log...

    Iteration Objective Primal Inf. Dual Inf. Time
    151874 4.8200000e+02 0.000000e+00 0.000000e+00 176s

    Root relaxation: objective 4.820000e+02, 151874 iterations, 132.53 seconds (71.20 work units)

    Nodes | Current Node | Objective Bounds | Work
    Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
    0 0 482.00000 0 10694 -0.00000 482.00000 - - 677s
    H 0 0 182.0000000 482.00000 165% - 686s
    H 0 0 193.0000000 482.00000 150% - 706s
    0

Please sign in to leave a comment.