メインコンテンツへスキップ

Gurobi: Invalid data in vars array

回答済み

コメント

6件のコメント

  • Marika Karbstein
    Gurobi Staff Gurobi Staff

    It looks like you want to combine a max-constraint with a linear expression. This needs to be done in two steps and you need an additional auxiliary variable, e.g.

    Issuing_model.addConstr(aux["O+", "1", m, demand_index] == gp.max_(0, I1["O+", "1", m+1]))
    Issuing_model.addConstr(b1["O+", "1", m, demand_index] == aux["O+", "1", m, demand_index] - (11 - sum(I1["O+", "1", j] for j in range(2, m+1))))
    0
  • Shahrzad Valizadeh
    Investigator
    Conversationalist

    Thank you Marika for your time. In fact, I'm trying to write the constraint provided in the inserted image. I tried your suggestion and defined auxiliary variable to the model, but the problem stays the same.

        b1_{O+, 1, m} = (I1_{O+, 1, m+1} - (next demand OPM - \sum_{j=2}^{m+1}(I1_{O+, 1, j}))^{+})^{+}

    0
  • Marika Karbstein
    Gurobi Staff Gurobi Staff

    Please provide a minimal reproducible example, see Tutorial: Preparing a Minimal Reproducible Example

    0
  • Shahrzad Valizadeh
    Investigator
    Conversationalist

    import sys
    import gurobipy as gp
    from gurobipy import Model, GRB
    from datetime import datetime
    from gurobipy import quicksum
    from gurobipy import max_
    from gurobipy import LinExpr 

    next_demands_OPM is a vector of 100 demand values.      

    m1 = list(range(42, 0, -1))

    M = list(range(41, 0, -1))

    z11 = {}
            for r in blood_types:
                for m in M:
                    for demand_index in range(100):
                        z11[r, "1", m, demand_index] = Issuing_model.addVar(lb=-GRB.INFINITY, ub=GRB.INFINITY, name=f'z11_{r}_{"1"}_{m}_{demand_index}')
    z12 = {}
            for r in blood_types:
                for m in M:
                    for demand_index in range(100):
                        z12[r, "1", m, demand_index] = Issuing_model.addVar(lb=-GRB.INFINITY, ub=GRB.INFINITY, name=f'z12_{r}_{"1"}_{m}_{demand_index}')
    z13 = {}
            for r in blood_types:
                for m in M:
                    for demand_index in range(100):
                        z13[r, "1", m, demand_index] = Issuing_model.addVar(lb=-GRB.INFINITY, ub=GRB.INFINITY, name=f'z13_{r}_{"1"}_{m}_{demand_index}')                    
    z14 = {}
            for r in blood_types:
                for m in M:
                    for demand_index in range(100):
                        z14[r, "1", m, demand_index] = Issuing_model.addVar(lb=-GRB.INFINITY, ub=GRB.INFINITY, name=f'z14_{r}_{"1"}_{m}_{demand_index}')         

    b1 = {}
            for r in blood_types:
                for m in M:
                    for demand_index in range(100):
                        b1[r, "1", m, demand_index] = Issuing_model.addVar(vtype=GRB.INTEGER, name=f'b1_{r}_{"1"}_{m}_{demand_index}')

    I1 = {}
            for r in blood_types:
                for m in m1:
                    I1[r, "1", m] = Issuing_model.addVar(vtype=GRB.INTEGER, name=f'I1_{r}_{"1"}_{m}')     

         for demand_index, demand in enumerate(next_demands_OPM):
                next_demand_OPM = demand
                for m in M:
                    if m == 1:
                        Issuing_model.addConstr(z14["O+", "1", m, demand_index] == gp.max_(0, I1["O+", "1", m+1] - next_demand_OPM))
                        Issuing_model.addConstr(b1["O+", "1", m, demand_index]  == z14["O+", "1", m, demand_index])
                    else:
                        Issuing_model.addConstr(z11["O+", "1", m, demand_index] == next_demand_OPM - gp.quicksum(I1["O+", "1", j] for j in range(2, m+1)))
                        Issuing_model.addConstr(z12["O+", "1", m, demand_index] == gp.max_(0, z11["O+", "1", m, demand_index]))
                        Issuing_model.addConstr(z13["O+", "1", m, demand_index] == I1["O+", "1", m+1] - z12["O+", "1", m, demand_index])
                        Issuing_model.addConstr(b1["O+", "1", m, demand_index]  == gp.max_(0, z13["O+", "1", m, demand_index]))

    0
  • Marika Karbstein
    Gurobi Staff Gurobi Staff

    Please check how Model.addGenConstrMax() is used.

    gp.max_(0, I1["O+", "1", m+1] - next_demand_OPM))
    is not possible. The input has to be variables over which the MAX will be taken.
    I1["O+", "1", m+1] - next_demand_OPM) is a linear expression and needs to be assigned to an (auxiliary) variable first.
    So, you probably want to have
    Issuing_model.addConstr(z14["O+", "1", m, demand_index] == I1["O+", "1", m+1] - next_demand_OPM)
    Issuing_model.addConstr(b1["O+", "1", m, demand_index]  == gp.max_(0, z14["O+", "1", m, demand_index]))
    0
  • Shahrzad Valizadeh
    Investigator
    Conversationalist

    Thank you so much Marika for your time and suggestions. That was so valuable to me.

    0

サインインしてコメントを残してください。