Skip to main content

Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

Answered

Comments

7 comments

  • Gwyneth Butera
    Gurobi Staff Gurobi Staff

    Yes, being out of memory could cause this:

    https://stackoverflow.com/questions/43268156/process-finished-with-exit-code-137-in-pycharm

    0
  • Do you know if I can see how far the solver came and how much that was left? Can I calculate the total amount of nodes or figure out the time the solver would use in any other way?

    Below is a log of the current run, but the previous run stopped at about 6 000 000 nodes explored and 5 000 000 nodes unexplored:

     

    /Users/sebastianeriklokenrindvoll/PycharmProjects/OptimizeFSM/venv/bin/python /Users/sebastianeriklokenrindvoll/PycharmProjects/OptimizeFSM/venv/GurobiModel.py
    Using license file /Users/sebastianeriklokenrindvoll/gurobi.lic
    Academic license - for non-commercial use only
    Changed value of parameter MIPGap to 0.01
    Prev: 0.0001 Min: 0.0 Max: inf Default: 0.0001
    Gurobi Optimizer version 9.0.2 build v9.0.2rc0 (mac64)
    Optimize a model with 32396 rows, 27416 columns and 303045 nonzeros
    Model fingerprint: 0x0e0a9d8b
    Variable types: 776 continuous, 26640 integer (0 binary)
    Coefficient statistics:
    Matrix range [1e+00, 1e+04]
    Objective range [7e-02, 1e+03]
    Bounds range [1e+00, 1e+03]
    RHS range [1e+00, 5e+02]
    Presolve removed 5074 rows and 1245 columns
    Presolve time: 0.36s
    Presolved: 27322 rows, 26171 columns, 147710 nonzeros
    Variable types: 771 continuous, 25400 integer (25400 binary)

    Deterministic concurrent LP optimizer: primal and dual simplex
    Showing first log only...

    Concurrent spin time: 0.00s

    Solved with primal simplex

    Root relaxation: objective 5.399574e+04, 4766 iterations, 0.25 seconds

    Nodes | Current Node | Objective Bounds | Work
    Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

    0 0 53995.7371 0 228 - 53995.7371 - - 12s
    0 0 53995.7371 0 140 - 53995.7371 - - 17s
    0 0 53995.7371 0 146 - 53995.7371 - - 28s
    0 0 53995.7371 0 216 - 53995.7371 - - 30s
    0 0 53995.7371 0 199 - 53995.7371 - - 30s
    0 0 53995.7371 0 122 - 53995.7371 - - 35s
    0 0 53995.7371 0 117 - 53995.7371 - - 35s
    0 0 53995.7371 0 129 - 53995.7371 - - 42s
    0 0 53995.7371 0 140 - 53995.7371 - - 43s
    0 0 53995.7371 0 149 - 53995.7371 - - 48s
    0 0 53995.7371 0 145 - 53995.7371 - - 50s
    0 0 53995.7371 0 145 - 53995.7371 - - 54s
    0 0 53995.7371 0 128 - 53995.7371 - - 54s
    0 0 54017.3760 0 124 - 54017.3760 - - 61s
    0 0 54020.0426 0 112 - 54020.0426 - - 63s
    0 0 54020.0426 0 119 - 54020.0426 - - 63s
    0 0 54153.3760 0 122 - 54153.3760 - - 64s
    0 0 54153.3760 0 107 - 54153.3760 - - 65s
    0 0 54153.3760 0 130 - 54153.3760 - - 66s
    0 0 54153.3760 0 126 - 54153.3760 - - 66s
    0 0 54153.3760 0 134 - 54153.3760 - - 68s
    0 0 54153.3760 0 148 - 54153.3760 - - 69s
    0 0 54153.3760 0 95 - 54153.3760 - - 73s
    0 0 54153.3760 0 141 - 54153.3760 - - 78s
    0 0 54153.3760 0 103 - 54153.3760 - - 81s
    0 0 54153.3760 0 103 - 54153.3760 - - 82s
    0 2 54153.3760 0 103 - 54153.3760 - - 90s
    3 6 54153.3760 2 116 - 54153.3760 - 1863 95s
    27 25 54453.9315 7 177 - 54153.3760 - 613 102s
    54 46 54611.5704 12 141 - 54153.3760 - 502 105s
    141 91 55590.9969 32 131 - 54153.3760 - 307 110s
    209 136 55819.0541 47 148 - 54153.3760 - 265 115s
    322 213 57092.1997 70 150 - 54153.3760 - 222 120s
    407 255 57172.1997 81 154 - 54153.3760 - 197 126s
    490 291 61675.7947 97 169 - 54153.3760 - 188 130s
    630 396 62527.9285 122 171 - 54153.3760 - 172 135s
    742 437 63127.9572 149 168 - 54153.3760 - 158 141s
    817 487 65864.9833 186 163 - 54153.3760 - 154 145s
    964 586 88252.2088 216 124 - 54153.3760 - 155 154s
    997 652 88252.2088 224 124 - 54153.3760 - 160 156s
    1083 653 88380.2802 222 140 - 54153.3760 - 156 169s
    1084 654 54611.4811 15 140 - 54153.3760 - 156 170s
    1086 655 55439.2945 26 215 - 54153.3760 - 156 175s
    1089 657 55408.4357 16 128 - 54153.3760 - 155 191s
    1093 660 58093.5428 84 131 - 54153.3760 - 155 199s
    1095 661 58632.1622 67 114 - 54153.3760 - 154 205s
    1097 662 55120.3538 12 112 - 54153.3760 - 154 214s
    1099 664 55408.4357 16 111 - 54153.3760 - 154 218s
    1101 665 56707.9868 72 111 - 54153.3760 - 153 226s
    1105 668 54653.5191 15 104 - 54153.3760 - 153 240s
    1107 669 56870.5527 78 104 - 54153.3760 - 153 264s
    1108 673 54153.3760 13 103 - 54153.3760 - 424 268s
    1110 674 54153.3760 14 99 - 54153.3760 - 424 270s
    1126 677 54345.3760 16 109 - 54153.3760 - 421 275s
    1166 698 54443.8859 21 157 - 54337.7315 - 416 280s
    1223 718 54779.0031 26 142 - 54337.7315 - 406 287s
    1246 732 55130.1718 29 140 - 54337.7315 - 403 290s
    1287 743 55192.2273 34 130 - 54337.7315 - 394 295s
    1325 756 55292.7098 39 139 - 54337.7315 - 388 300s
    1508 799 56041.5846 54 132 - 54337.7315 - 356 305s
    1790 843 57995.1261 81 103 - 54337.7315 - 309 310s
    2001 959 54691.5704 34 90 - 54361.3760 - 290 315s
    2295 1048 55836.7492 37 119 - 54453.9315 - 265 320s
    2684 1278 54847.2605 56 102 - 54460.2894 - 240 326s
    2984 1387 56471.5154 140 105 - 54460.2894 - 224 330s


    ...

    278944 237642 55198.7428 79 130 - 54650.4593 - 122 3722s
    279228 237962 56087.4988 190 117 - 54650.4593 - 122 3729s
    279567 238534 55591.2926 95 116 - 54650.4593 - 122 3734s
    280203 238890 54672.6815 45 145 - 54650.4593 - 122 3740s
    280593 239426 55181.4649 98 128 - 54650.4593 - 122 3748s
    281179 240161 55240.3538 64 119 - 54650.4593 - 122 3755s
    282050 240734 58959.3693 202 121 - 54650.4593 - 122 3761s

     

    0
  • Matthias Miltenberger
    Gurobi Staff Gurobi Staff

    Hi Sebastian,

    I just shortened the log output in your previous post for better readability.

    On topic: Tree size estimation is still an open question and people are actively researching in this area. You might find this article interesting: http://www.optimization-online.org/DB_HTML/2020/04/7722.html

    Cheers,
    Matthias

    0
  • Thank you Matthias! :)

    0
  • Hi again Matthias Miltenberger!

     

    Do you know if a more aggressive Presolve and Cuts will certainly make the process faster for such a tough MIP problem?

    0
  • Matthias Miltenberger
    Gurobi Staff Gurobi Staff

    Hi Sebastian,

    I would recommend you just try a few different parameters to see how they perform. It's almost impossible to give a parameter suggestion that makes the optimization "certainly faster". You should also check out this part in our documentation about how to read MIP log files.

    Cheers,
    Matthias

    0
  • Thank you! :) 

    But it is difficult to test for my model since when I increase one of the parameters in my model from 3 to 4 it goes from 30 seconds to over 20 000 seconds. And if I have understood your documentation right it seems like something that works for my model when I set the parameter in my model equal to 3 does not have to be the right parameter tuning when I set the parameter in my model to 4. 

    0

Please sign in to leave a comment.