improving the quality of feasible solution
AnsweredHi, gurobi support center,
I am running a MIP problem. Some useful parameters have been set acording to the discuss of community topics. However, the solving process is still slow, although many feasible solutions have been found, the gap is still moving slow, the log file is below,
Set parameter Username
Set parameter MIPGap to value 0.005
Set parameter CrossoverBasis to value 0
Set parameter MIPFocus to value 1
Set parameter NodefileDir to value ""
Set parameter PreSOS2BigM to value 0
Set parameter TuneTrials to value 3
Academic license - for non-commercial use only - expires 2022-11-08
Gurobi Optimizer version 9.5.0 build v9.5.0rc5 (win64)
Thread count: 16 physical cores, 24 logical processors, using up to 24 threads
Optimize a model with 169732 rows, 63121 columns and 433258 nonzeros
Model fingerprint: 0x251c3e28
Variable types: 54769 continuous, 8352 integer (8352 binary)
Coefficient statistics:
Matrix range [5e-02, 2e+02]
Objective range [8e-02, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [2e-02, 1e+02]
Loaded user MIP start with objective 176.81
Presolve removed 58847 rows and 3823 columns
Presolve time: 0.66s
Presolved: 110885 rows, 59298 columns, 366746 nonzeros
Variable types: 51246 continuous, 8052 integer (8052 binary)
Deterministic concurrent LP optimizer: primal and dual simplex (primal and dual model)
Showing first log only...
Root relaxation presolved: 110885 rows, 59298 columns, 366746 nonzeros
Root simplex log...
Iteration Objective Primal Inf. Dual Inf. Time
88272 1.5872215e+02 4.421830e+02 5.117081e+09 5s
120935 1.9017228e+02 1.598623e+00 1.285652e+09 10s
121695 3.6697052e+02 0.000000e+00 4.714356e+03 10s
142236 2.1813784e+02 0.000000e+00 3.017899e+04 15s
152936 1.7907953e+02 0.000000e+00 3.835336e+04 20s
159322 1.7323108e+02 0.000000e+00 9.919461e+03 25s
164558 1.7100706e+02 0.000000e+00 5.792443e+04 30s
170226 1.6877003e+02 0.000000e+00 2.918793e+04 35s
175828 1.6839788e+02 0.000000e+00 0.000000e+00 39s
Concurrent spin time: 3.08s
Solved with dual simplex (primal model)
Root relaxation: objective 1.683979e+02, 132277 iterations, 41.31 seconds (66.12 work units)
Total elapsed time = 45.32s
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 168.39788 0 613 176.80977 168.39788 4.76% - 48s
0 0 168.40020 0 1224 176.80977 168.40020 4.76% - 55s
0 0 168.41668 0 1311 176.80977 168.41668 4.75% - 58s
0 0 168.41783 0 1562 176.80977 168.41783 4.75% - 66s
0 0 168.42218 0 1593 176.80977 168.42218 4.74% - 69s
0 0 168.42464 0 1687 176.80977 168.42464 4.74% - 77s
0 0 168.42464 0 1690 176.80977 168.42464 4.74% - 79s
0 0 168.42464 0 1768 176.80977 168.42464 4.74% - 84s
0 0 168.42464 0 1784 176.80977 168.42464 4.74% - 88s
0 0 168.42464 0 386 176.80977 168.42464 4.74% - 102s
0 2 168.42464 0 322 176.80977 168.42464 4.74% - 282s
3 8 168.43386 2 423 176.80977 168.42464 4.74% 5401 287s
15 32 168.76517 4 434 176.80977 168.42464 4.74% 3005 292s
47 64 168.77014 6 434 176.80977 168.43393 4.74% 1769 295s
63 80 168.77014 7 434 176.80977 168.43393 4.74% 1426 349s
79 96 168.77144 8 412 176.80977 168.43393 4.74% 1178 1802s
95 127 168.77243 9 415 176.80977 168.43393 4.74% 1021 1812s
126 145 168.77905 11 421 176.80977 168.43393 4.74% 842 1818s
144 175 168.77905 13 492 176.80977 168.43393 4.74% 844 1822s
174 191 168.77905 15 491 176.80977 168.43393 4.74% 829 2558s
190 227 168.77905 16 503 176.80977 168.43393 4.74% 794 2565s
H 226 243 176.8097683 168.43393 4.74% 784 3162s
242 303 169.02510 19 663 176.80977 168.43393 4.74% 805 3166s
302 333 168.77905 20 662 176.80977 168.43393 4.74% 825 3217s
332 349 168.77905 21 679 176.80977 168.43393 4.74% 873 3956s
H 337 349 176.8097681 168.43393 4.74% 875 3956s
348 429 168.77905 22 679 176.80977 168.43393 4.74% 893 3961s
428 445 168.97342 26 682 176.80977 168.43393 4.74% 889 4994s
444 527 168.78132 26 684 176.80977 168.43393 4.74% 909 5000s
526 626 168.78132 32 781 176.80977 168.43393 4.74% 902 5006s
625 642 168.78132 36 765 176.80977 168.43393 4.74% 956 5811s
641 774 168.78132 37 779 176.80977 168.43393 4.74% 956 5819s
774 879 168.78132 44 801 176.80977 168.43393 4.74% 924 5827s
879 1008 168.78132 51 792 176.80977 168.43393 4.74% 926 5834s
1008 1142 168.78132 60 816 176.80977 168.43393 4.74% 916 5841s
1142 1291 168.79661 65 834 176.80977 168.43393 4.74% 902 5848s
1291 1427 168.78132 77 834 176.80977 168.43393 4.74% 890 6226s
1427 1647 168.78132 79 838 176.80977 168.43393 4.74% 872 6236s
1649 1782 168.78132 85 826 176.80977 168.43393 4.74% 844 7082s
H 1777 1782 176.8097681 168.43393 4.74% 835 7082s
1787 1969 168.78132 92 869 176.80977 168.43393 4.74% 832 7440s
1983 2201 168.78132 103 869 176.80977 168.43393 4.74% 830 7638s
2218 2633 168.78132 114 883 176.80977 168.43393 4.74% 820 7657s
2661 3050 168.78132 135 892 176.80977 168.43393 4.74% 784 7675s
3111 3463 168.81217 158 902 176.80977 168.43393 4.74% 768 7703s
3560 3853 168.78132 170 914 176.80977 168.43393 4.74% 765 7879s
3974 4150 168.78132 196 942 176.80977 168.43393 4.74% 756 8111s
4295 4264 168.78132 212 957 176.80977 168.43393 4.74% 756 8672s
4429 4879 168.78483 218 982 176.80977 168.43393 4.74% 760 8705s
5107 5526 168.78132 256 948 176.80977 168.43393 4.74% 748 8735s
5844 6111 168.78132 280 942 176.80977 168.43393 4.74% 729 8972s
6486 6339 168.78132 321 929 176.80977 168.43393 4.74% 725 9571s
6726 7256 168.78132 331 925 176.80977 168.43393 4.74% 725 9826s
7700 7272 168.80955 386 905 176.80977 168.43393 4.74% 713 11529s
7716 8265 168.78132 386 897 176.80977 168.43393 4.74% 714 11794s
8750 9003 168.78259 435 917 176.80977 168.43393 4.74% 713 12249s
H 9351 8435 176.0462462 168.43393 4.32% 715 12249s
9505 9737 168.78259 470 890 176.04625 168.43393 4.32% 712 12564s
H10080 9737 176.0391525 168.43393 4.32% 704 12564s
10928 9737 168.60419 198 386 176.03915 168.43393 4.32% 696 12739s
10930 9738 168.52702 46 660 176.03915 168.43393 4.32% 696 12778s
10931 9739 168.78452 85 1268 176.03915 168.45508 4.31% 696 12790s
10932 9740 168.70389 769 1405 176.03915 168.46808 4.30% 696 12804s
10933 9740 168.59379 377 1610 176.03915 168.46808 4.30% 696 12812s
10934 9741 168.57071 405 1706 176.03915 168.46808 4.30% 696 12822s
10935 9742 168.64604 348 1849 176.03915 168.46808 4.30% 696 12833s
10936 9742 170.26684 290 1914 176.03915 168.46808 4.30% 696 12842s
10937 9743 174.40063 120 1974 176.03915 168.48138 4.29% 696 12850s
10938 9744 168.57071 94 1964 176.03915 168.50959 4.28% 696 12856s
10939 9744 168.59379 331 380 176.03915 168.50959 4.28% 696 12869s
10940 9745 169.05994 170 380 176.03915 168.50959 4.28% 695 13007s
10941 9749 168.50959 11 311 176.03915 168.50959 4.28% 727 13012s
10947 9759 168.50959 13 321 176.03915 168.50959 4.28% 726 13015s
10971 9783 168.53635 15 456 176.03915 168.50959 4.28% 726 13023s
11003 9804 168.62100 16 568 176.03915 168.50959 4.28% 732 13026s
11019 9815 168.55368 16 577 176.03915 168.50959 4.28% 734 14438s
H11026 9324 176.0391525 168.50959 4.28% 733 14438s
H11031 8860 176.0391524 168.50959 4.28% 733 14438s
11035 8888 168.62100 17 577 176.03915 168.50959 4.28% 733 14440s
H11065 8454 176.0391524 168.50959 4.28% 733 14446s
11111 8485 168.60457 19 602 176.03915 168.50959 4.28% 735 15214s
H11113 8066 176.0391524 168.50959 4.28% 735 15214s
H11118 7668 176.0391519 168.50959 4.28% 736 15214s
11127 7707 168.60457 20 539 176.03915 168.50959 4.28% 735 15216s
11169 7709 168.60457 21 545 176.03915 168.50959 4.28% 736 15718s
11185 7759 168.64593 22 647 176.03915 168.50959 4.28% 737 15721s
11293 7833 168.60457 25 587 176.03915 168.50959 4.28% 739 15727s
11352 7830 168.60457 28 606 176.03915 168.50959 4.28% 739 16396s
H11365 7448 176.0391518 168.50959 4.28% 740 16396s
11368 7501 168.60457 28 613 176.03915 168.50959 4.28% 740 16425s
H11371 7142 175.6186285 168.50959 4.05% 740 16425s
H11498 6849 175.6186285 168.50959 4.05% 744 17141s
H11499 6526 175.5808192 168.50959 4.03% 744 17141s
H11503 6217 173.2873937 168.50959 2.76% 744 17141s
11514 6301 168.60457 32 644 173.28739 168.50959 2.76% 744 17146s
11603 6356 168.60457 36 659 173.28739 168.50959 2.76% 745 17150s
11688 6344 168.60457 38 661 173.28739 168.50959 2.76% 745 17810s
H11689 6051 173.2873935 168.50959 2.76% 744 17810s
H11692 5772 173.2871425 168.50959 2.76% 744 17810s
H11704 5582 173.2871425 168.50959 2.76% 744 17885s
H11718 5328 173.2859684 168.50959 2.76% 744 17885s
H11719 5089 172.2814395 168.50959 2.19% 744 17885s
11782 5189 168.60457 39 701 172.28144 168.50959 2.19% 744 17891s
11903 5273 168.60457 41 709 172.28144 168.50959 2.19% 744 17897s
12030 5376 168.60457 44 727 172.28144 168.50959 2.19% 744 17903s
12177 5483 168.60457 51 777 172.28144 168.50959 2.19% 743 17908s
12334 5583 168.60457 55 795 172.28144 168.50959 2.19% 742 17914s
12491 5653 168.60457 63 789 172.28144 168.50959 2.19% 740 18092s
H12527 5415 172.2360596 168.50959 2.16% 740 18092s
H12541 5196 172.2005241 168.50959 2.14% 740 18092s
12618 5357 168.60457 67 815 172.20052 168.50959 2.14% 741 18100s
12810 5465 168.60457 72 876 172.20052 168.50959 2.14% 740 18107s
12992 5524 168.60457 78 810 172.20052 168.50959 2.14% 739 18372s
H13000 5312 171.6208836 168.50959 1.81% 739 18372s
13120 5502 168.60457 83 812 171.62088 168.50959 1.81% 739 18382s
13390 5575 168.60457 90 799 171.62088 168.50959 1.81% 737 18678s
H13400 5373 171.5867903 168.50959 1.79% 736 18678s
H13433 5177 171.5799161 168.50959 1.79% 736 18678s
13563 5497 168.60457 96 795 171.57992 168.50959 1.79% 735 18690s
13945 5620 168.60457 111 782 171.57992 168.50959 1.79% 730 18703s
14211 5870 168.60457 121 777 171.57992 168.50959 1.79% 728 18714s
14554 5771 168.60457 132 799 171.57992 168.50959 1.79% 726 19443s
H14557 5596 171.5781598 168.50959 1.79% 726 19443s
H14558 5430 171.5781598 168.50959 1.79% 726 19443s
H14562 5271 171.5713590 168.50959 1.78% 726 19443s
H14568 5119 171.5632744 168.50959 1.78% 726 19443s
14570 5462 168.60457 133 802 171.56327 168.50959 1.78% 727 19595s
H14866 5213 171.5547050 168.50959 1.78% 725 19595s
14953 5484 168.60457 144 810 171.55470 168.50959 1.78% 724 19611s
15288 5582 168.60457 156 818 171.55470 168.50959 1.78% 720 19864s
H15326 5434 171.5504934 168.50959 1.77% 720 19864s
H15410 5246 171.5441800 168.50959 1.77% 720 19864s
15534 5758 168.60457 163 808 171.54418 168.50959 1.77% 721 19883s
16125 6173 168.60457 189 805 171.54418 168.50959 1.77% 714 19902s
16770 6382 168.60457 216 797 171.54418 168.50959 1.77% 707 20079s
H16935 6205 171.5405461 168.50959 1.77% 706 20079s
H17216 5995 171.5405448 168.50959 1.77% 705 20079s
17217 6725 168.60457 230 804 171.54054 168.50959 1.77% 705 20101s
17989 6786 168.60457 263 831 171.54054 168.50959 1.77% 697 20435s
18184 7045 168.60457 269 830 171.54054 168.50959 1.77% 698 20769s
H18285 7009 171.5336805 168.50959 1.76% 697 20769s
H18370 6914 171.5100926 168.50959 1.75% 697 20769s
18473 7294 168.60457 277 821 171.51009 168.50959 1.75% 696 21125s
H18528 7293 171.4999556 168.50959 1.74% 696 21125s
18921 8116 168.60457 291 816 171.49996 168.50959 1.74% 694 21157s
19831 8929 168.60457 306 823 171.49996 168.50959 1.74% 686 21310s
20686 9174 168.60457 325 838 171.49996 168.50959 1.74% 684 21643s
H20700 9164 171.4830611 168.50959 1.73% 684 21643s
20974 9562 168.60457 333 825 171.48306 168.50959 1.73% 682 22002s
H21027 9562 171.4830610 168.50959 1.73% 682 22002s
H21054 9562 171.4830604 168.50959 1.73% 682 22002s
H21324 9562 171.4830602 168.50959 1.73% 682 22002s
21406 11091 168.60457 346 840 171.48306 168.50959 1.73% 681 22362s
23042 11952 168.60457 394 814 171.48306 168.50959 1.73% 674 22731s
23986 12185 168.60457 423 810 171.48306 168.50959 1.73% 669 23086s
24226 13346 168.60457 431 805 171.48306 168.50959 1.73% 668 23426s
25518 14636 168.60457 468 803 171.48306 168.50959 1.73% 663 23794s
26946 15490 168.60457 510 799 171.48306 168.50959 1.73% 657 24143s
27826 16643 168.60457 537 780 171.48306 168.50959 1.73% 652 24496s
29026 17784 168.60457 575 783 171.48306 168.50959 1.73% 648 24864s
30226 18217 168.60457 612 783 171.48306 168.50959 1.73% 643 25357s
30665 18909 168.60457 613 782 171.48306 168.50959 1.73% 640 25694s
H31052 18909 171.4829956 168.50959 1.73% 637 25694s
31382 19422 168.60457 631 783 171.48300 168.50959 1.73% 635 26051s
H31400 19003 171.4758715 168.50959 1.73% 635 26051s
H31495 18744 171.4250468 168.50959 1.70% 634 26051s
31943 19899 168.60457 640 773 171.42505 168.50959 1.70% 632 26428s
H32000 19120 171.3592163 168.50959 1.66% 632 26428s
33160 19848 168.75601 669 790 171.35922 168.50959 1.66% 628 26836s
H33323 19802 171.3531277 168.50959 1.66% 629 26837s
34013 21402 168.67855 690 771 171.35313 168.50959 1.66% 628 27198s
H34373 21402 171.3531276 168.50959 1.66% 630 27198s
H35262 21351 171.3151670 168.50959 1.64% 628 27198s
35712 22877 170.83324 782 787 171.31517 168.50959 1.64% 628 27573s
H36430 22877 171.3151669 168.50959 1.64% 626 27573s
37502 22890 infeasible 827 171.31517 168.50959 1.64% 624 28421s
H37505 22890 171.3151668 168.50959 1.64% 624 28421s
37520 24391 169.56980 828 789 171.31517 168.50959 1.64% 624 28822s
H38186 24012 171.1486153 168.50959 1.54% 624 28822s
39116 25160 cutoff 868 171.14862 168.50959 1.54% 623 29247s
H39200 25160 171.1484276 168.50959 1.54% 624 29247s
H40018 25140 171.1446675 168.50959 1.54% 622 29248s
40629 26446 168.57071 53 692 171.14467 168.50959 1.54% 621 29721s
H40700 26446 171.1446674 168.50959 1.54% 621 29721s
H40844 26238 171.1441980 168.50959 1.54% 621 29721s
H40916 26235 171.1358050 168.50959 1.53% 621 29721s
42181 26462 168.57071 89 741 171.13581 168.50959 1.53% 618 30851s
H42301 26462 171.1358049 168.50959 1.53% 618 30851s
H42322 26462 171.1358047 168.50959 1.53% 618 30851s
H42401 26459 171.1328561 168.50959 1.53% 618 30851s
H42441 26459 171.1324579 168.50959 1.53% 618 30851s
42463 29180 168.57071 99 745 171.13246 168.50959 1.53% 618 31559s
H42685 29130 171.1206602 168.50959 1.53% 617 31559s
45423 30898 168.57071 192 797 171.12066 168.50959 1.53% 619 32124s
H45859 30897 171.1194637 168.50959 1.53% 617 32124s
46683 30897 168.57319 200 799 171.11946 168.50959 1.53% 618 32125s
47314 32390 168.57071 281 809 171.11946 168.50959 1.53% 616 32682s
H47400 32390 171.1194636 168.50959 1.53% 615 32682s
H47487 32386 171.1157088 168.50959 1.52% 615 32682s
H49000 33677 171.1149786 168.50959 1.52% 614 33422s
H49202 33642 171.1112302 168.50959 1.52% 614 33422s
H50212 32278 170.7955415 168.50959 1.34% 613 33423s
50398 32504 168.59328 375 838 170.79554 168.50959 1.34% 613 34522s
H50507 32504 170.7955414 168.50959 1.34% 613 34522s
H50516 32485 170.7909082 168.50959 1.34% 613 34522s
50735 34966 168.57071 375 816 170.79091 168.50959 1.34% 612 35334s
H50966 34966 170.7909080 168.50959 1.34% 612 35334s
H51132 34946 170.7838926 168.50959 1.33% 611 35334s
H51747 34946 170.7835799 168.50959 1.33% 611 35335s
H52264 34945 170.7822337 168.50959 1.33% 612 35335s
H52928 34936 170.7815896 168.50959 1.33% 611 35335s
53361 36781 168.57071 458 788 170.78159 168.50959 1.33% 610 36248s
H54060 36781 170.7815891 168.50959 1.33% 607 36248s
H54460 36758 170.7745556 168.50959 1.33% 608 36248s
H54920 36758 170.7745555 168.50959 1.33% 608 36248s
H55020 36758 170.7744580 168.50959 1.33% 608 36249s
H55480 36752 170.7730136 168.50959 1.33% 608 36249s
55581 38543 168.57071 528 768 170.77301 168.50959 1.33% 608 37106s
H55600 38538 170.7720178 168.50959 1.32% 608 37106s
H55700 38538 170.7713820 168.50959 1.32% 607 37106s
57553 40491 168.57071 588 757 170.77138 168.50959 1.32% 609 37961s
H57600 40491 170.7713819 168.50959 1.32% 609 37961s
H58275 40487 170.7675985 168.50959 1.32% 609 37962s
H59890 41934 170.7664986 168.50959 1.32% 613 38902s
H60001 41543 170.7115898 168.50959 1.29% 612 38902s
H60479 41358 170.6690701 168.50959 1.27% 612 38903s
H60671 40621 170.5784744 168.50959 1.21% 612 38903s
61585 40659 168.57071 717 718 170.57847 168.50959 1.21% 613 40534s
H61601 40659 170.5784743 168.50959 1.21% 613 40534s
H61616 40644 170.5741381 168.50959 1.21% 613 40534s
61811 43233 168.57071 725 713 170.57414 168.50959 1.21% 613 41097s
64727 45754 168.57071 818 697 170.57414 168.50959 1.21% 615 42306s
H65433 45754 170.5741380 168.50959 1.21% 615 42306s
H65681 45754 170.5740772 168.50959 1.21% 615 42306s
H66921 45751 170.5704309 168.50959 1.21% 615 42306s
67555 47591 168.61494 910 659 170.57043 168.50959 1.21% 615 43355s
H67846 47591 170.5704309 168.50959 1.21% 614 43355s
H68692 47591 170.5704308 168.50959 1.21% 614 43355s
H69084 47591 170.5704308 168.50959 1.21% 614 43355s
H69606 48944 170.5704308 168.50959 1.21% 614 44658s
H69700 48944 170.5704308 168.50959 1.21% 614 44658s
H69875 48944 170.5704306 168.50959 1.21% 615 44658s
H70160 48943 170.5697227 168.50959 1.21% 614 44658s
71110 51410 168.61494 1030 633 170.56972 168.50959 1.21% 612 45464s
71295 51410 cutoff 303 170.56972 168.50959 1.21% 612 45465s
H72518 51410 170.5697226 168.50959 1.21% 611 45465s
73897 51479 cutoff 1122 170.56972 168.50959 1.21% 611 47138s
H73898 51479 170.5697225 168.50959 1.21% 611 47138s
H73902 51479 170.5697224 168.50959 1.21% 611 47138s
73977 52890 168.90092 1123 608 170.56972 168.50959 1.21% 611 48070s
H74336 52890 170.5697224 168.50959 1.21% 611 48070s
75619 54001 169.20213 1153 613 170.56972 168.50959 1.21% 610 49509s
H75783 54001 170.5697224 168.50959 1.21% 611 49509s
H76698 54001 170.5697223 168.50959 1.21% 610 49510s
76862 55875 169.32139 1180 609 170.56972 168.50959 1.21% 610 50642s
H77039 55875 170.5697223 168.50959 1.21% 610 50642s
H77139 55875 170.5697222 168.50959 1.21% 610 50642s
H77417 55875 170.5697222 168.50959 1.21% 610 50642s
79179 57437 169.39738 1232 600 170.56972 168.50959 1.21% 606 51818s
H79507 57437 170.5697221 168.50959 1.21% 607 51818s
H79814 57437 170.5697219 168.50959 1.21% 606 51818s
H80958 57437 170.5697214 168.50959 1.21% 605 51819s
81203 59759 169.99678 1269 588 170.56972 168.51895 1.20% 604 52405s
H81812 59759 170.5697214 168.51895 1.20% 602 52405s
84025 62273 169.70698 26 627 170.56972 168.51895 1.20% 601 53694s
H84285 62273 170.5697213 168.51895 1.20% 602 53694s
H84989 62273 170.5697213 168.51895 1.20% 602 53694s
85266 62273 168.72494 706 890 170.56972 168.51895 1.20% 602 53695s
H86573 62273 170.5697211 168.51895 1.20% 602 53695s
H86849 62273 170.5697208 168.51895 1.20% 602 53695s
86850 64471 cutoff 98 170.56972 168.51895 1.20% 602 56049s
H88068 64471 170.5697202 168.51895 1.20% 602 56049s
89276 67134 170.56800 147 987 170.56972 168.51895 1.20% 602 57357s
H89585 67134 170.5697199 168.51895 1.20% 602 57357s
92236 69728 cutoff 196 170.56972 168.51895 1.20% 603 58759s
H92300 69728 170.5697198 168.51895 1.20% 603 58759s
H92835 69728 170.5697197 168.51895 1.20% 602 58759s
H94170 69728 170.5697194 168.51895 1.20% 602 58760s
H95076 68240 170.4928159 168.51895 1.16% 603 60754s
H95201 67434 170.4088412 168.51895 1.11% 603 60754s
H95326 66516 170.3171189 168.51895 1.06% 603 60754s
H95761 66411 170.3087200 168.51895 1.05% 602 60755s
H96261 66202 170.2751718 168.51895 1.03% 602 60755s
97189 66351 cutoff 253 170.27517 168.51991 1.03% 602 64035s
H97211 66351 170.2751717 168.51991 1.03% 602 64035s
H97497 66351 170.2750680 168.51991 1.03% 602 64035s
97942 69009 168.57177 25 676 170.27507 168.51991 1.03% 601 65540s
H99627 69009 170.2750680 168.51991 1.03% 602 65540s
H100182 68239 170.2111995 168.51991 0.99% 602 65541s
Best regards!
0
-
Hi Yansong,
To speedup the Gurobi performance, you might want to experiment with the parameters below:
- Cuts: The log file shows that the node throughput is very slow. Two nodes were processed on average per second. It might make sense to shut the Cuts off to increase the number of nodes processed per second. Processing more nodes can boost the probability of reaching the optimal solution faster.
- Presolve: Intensifying the presolve level by setting it to 2 can result in a tighter model. Solving a tighter model increases the likelihood of having tighter bounds and better incumbents.
- Heuristics (RINS): Applying heuristics more aggressively by setting appropriate values for these two parameters can be helpful.
- ConcurrentMIP: This parameter allows to run multiple independent solves in parallel, each with a different parameter setting. Since you have access to a machine with 24 logical threads, this parameter might be helpful.
Best regards,
Maliheh
0 -
Thank you, Maliheh.
0
Please sign in to leave a comment.
Comments
2 comments