Large MIP Model Stops Progressing - Many Equivalent Solutions?
AnsweredI have a MIP model for a manufacturing plant production optimization. The objective function is to maximize production (in pounds of product) out of the plant, limited by a demand input per modeled SKU (the plant does not have enough capacity to produce all demand for all modeled SKUs)
Due to some unique operational constraints in the plant, the model is very heavy on binary decision variables. My MIP makes reasonable progress for several hours then makes almost no progress (<1% improvement) at all. I suspect this may be because since the objective function is just to maximize pounds out of the plant, there are potentially a lot of different manufacturing sequences that enable that same volume, and Gurobi is getting hung up on that.
Any help is appreciated, log is below. I stopped the model after 36 hours, when it was making no progress.
`Gurobi 9.5.1 (win64, R) logging started Tue Jun 21 09:22:21 2022
Set parameter MIPGap to value 0.05
Set parameter LogFile to value "mylogfile.log"
Set parameter Threads to value 8
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64)
Thread count: 8 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 5068276 rows, 2798040 columns and 17245353 nonzeros
Model fingerprint: 0x3a663bea
Variable types: 265596 continuous, 2532444 integer (2532444 binary)
Coefficient statistics:
Matrix range [3e-03, 9e+02]
Objective range [3e-03, 4e-02]
Bounds range [1e+00, 8e+02]
RHS range [6e-02, 2e+03]
Presolve removed 666123 rows and 1329490 columns (presolve time = 6s) ...
Presolve removed 2584648 rows and 1766089 columns (presolve time = 10s) ...
Presolve removed 3063017 rows and 1766089 columns (presolve time = 15s) ...
Presolve removed 3063017 rows and 1766089 columns (presolve time = 20s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 25s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 30s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 35s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 40s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 45s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 50s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 55s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 61s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 65s) ...
Presolve removed 3118938 rows and 1766089 columns (presolve time = 75s) ...
Presolve removed 3118938 rows and 1769337 columns (presolve time = 75s) ...
Presolve removed 3119859 rows and 1769337 columns (presolve time = 80s) ...
Presolve removed 3119859 rows and 1769337 columns (presolve time = 85s) ...
Presolve removed 3119859 rows and 1769337 columns (presolve time = 90s) ...
Presolve removed 3119859 rows and 1769337 columns
Presolve time: 91.45s
Presolved: 1948417 rows, 1028703 columns, 7023541 nonzeros
Variable types: 14016 continuous, 1014687 integer (1014687 binary)
Found heuristic solution: objective -0.0000000
Deterministic concurrent LP optimizer: primal simplex, dual simplex, and barrier
Showing barrier log only...
Root barrier log...
Ordering time: 0.43s
Barrier statistics:
Dense cols : 2256
AA' NZ : 7.880e+06
Factor NZ : 1.951e+07 (roughly 1.4 GB of memory)
Factor Ops : 3.060e+09 (less than 1 second per iteration)
Threads : 6
Objective Residual
Iter Primal Dual Primal Dual Compl Time
0 8.83031470e+04 3.67801562e+06 3.24e+05 1.39e-02 1.81e+02 137s
1 4.99851529e+04 3.90858020e+06 2.16e+05 8.80e-02 1.33e+02 138s
2 2.01812644e+04 6.20770784e+06 7.93e+04 2.32e-01 7.63e+01 139s
3 9.91361265e+02 5.59178647e+06 3.02e+03 3.63e+00 4.38e+00 141s
4 5.09305893e+02 2.86821727e+06 1.30e+03 1.29e+00 1.56e+00 142s
5 3.51463911e+02 1.19388252e+06 6.99e+02 4.98e-01 5.41e-01 143s
6 2.37097220e+02 7.03622810e+05 3.08e+02 2.86e-01 2.55e-01 144s
7 1.89082066e+02 1.77169119e+05 1.52e+02 3.83e-01 5.97e-02 146s
8 1.50065109e+02 8.05079515e+04 3.07e+01 1.70e-01 2.32e-02 147s
9 1.41449087e+02 4.39698447e+04 1.29e+01 1.24e-01 1.21e-02 148s
10 1.36003646e+02 1.96039211e+04 6.43e+00 1.14e-01 5.21e-03 150s
11 1.34204601e+02 5.93054215e+03 4.55e+00 1.01e-02 1.53e-03 151s
12 1.30760828e+02 1.88586491e+03 1.24e+00 1.82e-03 4.51e-04 152s
13 1.30543654e+02 1.36042339e+03 1.06e+00 1.45e-03 3.16e-04 153s
14 1.30577492e+02 4.88248470e+02 7.92e-01 8.10e-04 9.22e-05 155s
15 1.29899016e+02 1.81907069e+02 1.69e-03 1.86e-04 1.31e-05 156s
16 1.29972281e+02 1.30029701e+02 1.20e-10 3.05e-07 1.45e-08 158s
17 1.29973998e+02 1.29974056e+02 1.88e-11 1.64e-11 1.45e-11 159s
18 1.29973999e+02 1.29974048e+02 1.56e-11 1.03e-08 1.23e-11 160s
19 1.29973999e+02 1.29974043e+02 1.42e-11 2.93e-08 1.15e-11 161s
20 1.29973999e+02 1.29974033e+02 1.24e-11 3.50e-08 8.93e-12 163s
21 1.29974000e+02 1.29974023e+02 4.45e-12 3.23e-08 6.13e-12 164s
22 1.29974000e+02 1.29974018e+02 2.07e-12 2.38e-08 4.81e-12 166s
23 1.29974000e+02 1.29974017e+02 2.03e-12 3.62e-08 4.76e-12 168s
24 1.29974000e+02 1.29974009e+02 1.94e-12 2.86e-07 4.69e-12 170s
25 1.29974000e+02 1.29974001e+02 1.54e-12 1.66e-07 3.19e-12 171s
26 1.29974000e+02 1.29974001e+02 1.43e-12 1.66e-07 3.19e-12 173s
27 1.29974000e+02 1.29974001e+02 1.43e-12 2.23e-07 3.19e-12 174s
Barrier solved model in 27 iterations and 174.30 seconds (84.40 work units)
Optimal objective 1.29974000e+02
Root crossover log...
13 DPushes remaining with DInf 0.0000000e+00 176s
0 DPushes remaining with DInf 0.0000000e+00 177s
50617 PPushes remaining with PInf 0.0000000e+00 177s
4277 PPushes remaining with PInf 0.0000000e+00 207s
208 PPushes remaining with PInf 0.0000000e+00 212s
0 PPushes remaining with PInf 0.0000000e+00 214s
Push phase complete: Pinf 0.0000000e+00, Dinf 0.0000000e+00 214s
Root simplex log...
Iteration Objective Primal Inf. Dual Inf. Time
50633 1.2997400e+02 0.000000e+00 0.000000e+00 215s
50633 1.2997400e+02 0.000000e+00 0.000000e+00 217s
Concurrent spin time: 9.63s
Solved with barrier
Root relaxation: objective 1.299740e+02, 50633 iterations, 103.47 seconds (57.67 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 129.97400 0 27370 -0.00000 129.97400 - - 414s
0 0 129.97400 0 17515 -0.00000 129.97400 - - 2077s
H 0 0 0.1275600 129.97400 - - 2184s
0 0 129.97400 0 17078 0.12756 129.97400 - - 2349s
0 0 129.97400 0 15964 0.12756 129.97400 - - 3359s
H 0 0 1.5930012 129.97400 8059% - 3444s
H 0 0 2.6202159 129.97400 4860% - 3795s
0 0 129.97400 0 15524 2.62022 129.97400 4860% - 4146s
0 0 129.97400 0 14692 2.62022 129.97400 4860% - 5509s
H 0 0 18.8285484 129.97400 590% - 9206s
0 0 129.97400 0 14525 18.82855 129.97400 590% - 9665s
0 0 129.97400 0 14136 18.82855 129.97400 590% - 10953s
H 0 0 19.1400019 129.97400 579% - 11593s
0 0 129.97400 0 12206 19.14000 129.97400 579% - 11972s
0 0 129.97400 0 11578 19.14000 129.97400 579% - 12918s
0 0 129.97400 0 10253 19.14000 129.97400 579% - 13706s
0 0 129.97400 0 10349 19.14000 129.97400 579% - 14381s
H 0 0 19.8170780 129.97400 556% - 14434s
0 0 129.97400 0 10228 19.81708 129.97400 556% - 14651s
0 0 129.97400 0 9674 19.81708 129.97400 556% - 15343s
0 0 129.97400 0 9631 19.81708 129.97400 556% - 15680s
0 0 129.97400 0 9512 19.81708 129.97400 556% - 16421s
H 0 0 21.1930857 129.97400 513% - 16506s
0 0 129.97400 0 9506 21.19309 129.97400 513% - 16761s
0 0 129.97400 0 9549 21.19309 129.97400 513% - 17474s
0 0 129.97400 0 9543 21.19309 129.97400 513% - 17675s
0 2 129.97400 0 9543 21.19309 129.97400 513% - 20927s
1 4 129.97400 1 9513 21.19309 129.97400 513% 7738 21545s
3 8 129.97400 2 8865 21.19309 129.97400 513% 33000 22231s
7 16 129.97400 3 8850 21.19309 129.97400 513% 40261 23026s
15 24 129.97400 4 21920 21.19309 129.97400 513% 88916 23658s
23 32 129.97400 4 8917 21.19309 129.97400 513% 122640 23724s
H 31 40 25.0682481 129.97400 418% 97024 25664s
H 34 40 25.3197620 129.97400 413% 89389 25665s
39 48 129.97400 6 8888 25.31976 129.97400 413% 81524 25707s
47 62 129.97400 7 8897 25.31976 129.97400 413% 71222 25783s
61 120 129.97400 9 8873 25.31976 129.97400 413% 59510 26176s
119 208 129.97400 19 8807 25.31976 129.97400 413% 39977 26959s
130 208 129.97400 18 13196 25.31976 129.97400 413% 36862 26960s
H 207 292 25.9871002 129.97400 400% 33492 27599s
H 218 292 26.5375709 129.97400 390% 31949 27599s
H 240 292 26.8791831 129.97400 384% 30791 27599s
H 271 292 27.1791068 129.97400 378% 29246 27600s
293 377 129.97400 40 8694 27.17911 129.97400 378% 30154 28262s
H 379 446 28.3338817 129.97400 359% 27983 28749s
H 401 446 29.1991904 129.97400 345% 26736 28749s
H 420 446 30.8235564 129.97400 322% 26229 28749s
H 431 446 32.7079464 129.97400 297% 25639 28750s
452 526 129.97400 62 8634 32.70795 129.97400 297% 25660 29308s
H 537 607 37.7409700 129.97400 244% 24137 29946s
H 543 607 39.1001977 129.97400 232% 23918 29946s
H 554 607 39.6870579 129.97400 227% 23608 29947s
H 565 607 40.8413506 129.97400 218% 23162 29947s
618 688 129.97400 79 8648 40.84135 129.97400 218% 22646 30687s
H 700 769 47.3679727 129.97400 174% 21529 31412s
H 705 769 47.5429806 129.97400 173% 21404 31413s
H 716 769 47.7433208 129.97400 172% 21201 31413s
H 738 769 50.9449877 129.97400 155% 20617 31413s
781 846 129.97400 90 8683 50.94499 129.97400 155% 20099 31978s
H 859 854 59.9018729 129.97400 117% 18998 33009s
H 861 854 65.5923304 129.97400 98.2% 18969 33009s
867 934 129.97400 95 8533 65.59233 129.97400 98.2% 18891 33447s
H 950 942 67.9987166 129.97400 91.1% 17894 37492s
H 951 942 69.6329037 129.97400 86.7% 17879 37492s
H 953 942 70.6750281 129.97400 83.9% 17850 37492s
H 954 942 73.7105384 129.97400 76.3% 17834 37493s
958 1013 129.97400 105 8549 73.71054 129.97400 76.3% 17803 42225s
H 1032 1021 74.2800689 129.97400 75.0% 17098 45513s
H 1033 1021 76.6349958 129.97400 69.6% 17085 45513s
1040 1109 129.97400 117 8551 76.63500 129.97400 69.6% 16989 45768s
1128 1194 129.97400 128 8486 76.63500 129.97400 69.6% 15877 46067s
1213 1281 129.97400 136 8474 76.63500 129.97400 69.6% 14951 46271s
1301 1369 129.97400 146 8481 76.63500 129.97400 69.6% 14116 46460s
1389 1457 129.97400 155 8542 76.63500 129.97400 69.6% 13381 46666s
1477 1543 129.97400 166 8590 76.63500 129.97400 69.6% 12736 46862s
1565 1630 129.97400 176 8559 76.63500 129.97400 69.6% 12168 47098s
1652 1718 129.97400 187 8469 76.63500 129.97400 69.6% 11663 47297s
1740 1799 129.97400 198 8435 76.63500 129.97400 69.6% 11202 47527s
1822 1876 129.97400 208 8408 76.63500 129.97400 69.6% 10808 47763s
1900 1963 129.97400 218 8476 76.63500 129.97400 69.6% 10463 47997s
1988 2045 129.97400 227 8449 76.63500 129.97400 69.6% 10126 48132s
H 2076 2129 76.8255641 129.97400 69.2% 9807 48370s
H 2107 2129 77.4513932 129.97400 67.8% 9726 48371s
H 2129 2129 79.4249210 129.97400 63.6% 9650 48371s
2162 2208 129.97400 247 8532 79.42492 129.97400 63.6% 9527 48571s
2244 2291 129.97400 252 8500 79.42492 129.97400 63.6% 9275 48744s
2329 2378 129.97400 260 8520 79.42492 129.97400 63.6% 9032 48940s
2416 2462 129.97400 270 8524 79.42492 129.97400 63.6% 8805 49123s
2502 2544 129.97400 279 8511 79.42492 129.97400 63.6% 8599 49305s
2584 2625 129.97400 286 8510 79.42492 129.97400 63.6% 8410 49505s
2665 2707 129.97400 296 8465 79.42492 129.97400 63.6% 8243 49688s
2747 2790 129.97400 301 8523 79.42492 129.97400 63.6% 8085 49869s
2830 2874 129.97400 306 8414 79.42492 129.97400 63.6% 7928 50022s
2917 2952 129.97400 317 8430 79.42492 129.97400 63.6% 7778 50214s
2997 3031 129.97400 324 8464 79.42492 129.97400 63.6% 7644 50405s
3076 3112 129.97400 333 8437 79.42492 129.97400 63.6% 7521 50598s
H 3157 3187 81.5603216 129.97400 59.4% 7403 50827s
3233 3256 129.97400 340 8396 81.56032 129.97400 59.4% 7311 51003s
3303 3327 129.97400 345 8380 81.56032 129.97400 59.4% 7209 51194s
3378 3390 129.97400 354 8367 81.56032 129.97400 59.4% 7102 51343s
3441 3466 129.97400 357 8390 81.56032 129.97400 59.4% 7017 51557s
3518 3547 129.97400 363 8380 81.56032 129.97400 59.4% 6929 51722s
3599 3631 129.97400 372 8345 81.56032 129.97400 59.4% 6842 51893s
3683 3699 129.97400 381 8370 81.56032 129.97400 59.4% 6757 52057s
3751 3769 129.97400 384 8392 81.56032 129.97400 59.4% 6679 52233s
3822 3839 129.97400 387 8404 81.56032 129.97400 59.4% 6605 52405s
3892 3909 129.97400 391 8422 81.56032 129.97400 59.4% 6534 52576s
3962 3988 129.97400 394 8440 81.56032 129.97400 59.4% 6462 52748s
4042 4062 129.97400 397 8446 81.56032 129.97400 59.4% 6395 52918s
4116 4132 129.97400 400 8590 81.56032 129.97400 59.4% 6335 53077s
H 4190 4211 81.5648705 129.97400 59.4% 6274 53306s
H 4193 4211 81.5986210 129.97400 59.3% 6273 53306s
H 4204 4211 82.4750700 129.97400 57.6% 6279 53306s
4270 4291 129.97400 404 8430 82.47507 129.97400 57.6% 6213 53503s
4350 4362 129.97400 407 8731 82.47507 129.97400 57.6% 6155 53651s
4422 4440 129.97400 409 8560 82.47507 129.97400 57.6% 6108 53817s
4500 4520 129.97400 413 8582 82.47507 129.97400 57.6% 6058 53977s
4580 4599 129.97400 419 8584 82.47507 129.97400 57.6% 6007 54127s
4660 4672 129.97400 422 8526 82.47507 129.97400 57.6% 5958 54304s
4736 4743 129.97400 426 8506 82.47507 129.97400 57.6% 5909 54535s
4807 4808 129.97400 430 8464 82.47507 129.97400 57.6% 5865 54703s
4872 4875 129.97400 432 8445 82.47507 129.97400 57.6% 5823 54857s
4939 4945 129.97400 434 8435 82.47507 129.97400 57.6% 5781 55050s
5011 5015 129.97400 437 8432 82.47507 129.97400 57.6% 5741 55261s
5084 5087 129.97400 440 8433 82.47507 129.97400 57.6% 5701 55450s
5164 5159 129.97400 443 8441 82.47507 129.97400 57.6% 5659 55629s
H 5236 5235 82.7529905 129.97400 57.1% 5621 55809s
H 5238 5235 83.1894097 129.97400 56.2% 5621 55809s
5312 5305 129.97400 447 8443 83.18941 129.97400 56.2% 5584 55985s
5382 5376 129.97400 449 8441 83.18941 129.97400 56.2% 5550 56148s
5453 5453 129.97400 451 8493 83.18941 129.97400 56.2% 5517 56301s
5531 5524 129.97400 453 8496 83.18941 129.97400 56.2% 5483 56463s
5603 5592 129.97400 455 8487 83.18941 129.97400 56.2% 5453 56669s
5671 5665 129.97400 458 8487 83.18941 129.97400 56.2% 5425 56808s
5744 5731 129.97400 460 8480 83.18941 129.97400 56.2% 5396 57333s
5810 5805 129.97400 461 8487 83.18941 129.97400 56.2% 5379 57539s
5885 5878 129.97400 464 8498 83.18941 129.97400 56.2% 5347 57729s
5962 5948 129.97400 466 8493 83.18941 129.97400 56.2% 5316 57927s
6034 6017 129.97400 469 8594 83.18941 129.97400 56.2% 5288 58099s
6104 6086 129.97400 471 8516 83.18941 129.97400 56.2% 5259 58311s
H 6177 6094 84.8087342 129.97400 53.3% 5231 60544s
H 6184 6094 84.8262992 129.97400 53.2% 5230 60545s
6185 6161 129.97400 475 8502 84.82630 129.97400 53.2% 5229 60712s
6253 6229 129.97400 477 8528 84.82630 129.97400 53.2% 5205 60921s
6323 6299 129.97400 480 8431 84.82630 129.97400 53.2% 5177 61167s
6394 6369 129.97400 483 8514 84.82630 129.97400 53.2% 5151 61339s
6465 6432 129.97400 484 8513 84.82630 129.97400 53.2% 5128 61516s
6528 6495 129.97400 486 8551 84.82630 129.97400 53.2% 5103 61725s
6591 6562 129.97400 487 8542 84.82630 129.97400 53.2% 5080 61895s
6662 6629 129.97400 489 8550 84.82630 129.97400 53.2% 5057 62090s
6731 6699 129.97400 491 9349 84.82630 129.97400 53.2% 5033 62254s
6802 6773 129.97400 492 9246 84.82630 129.97400 53.2% 5013 62412s
6876 6847 129.97400 494 9275 84.82630 129.97400 53.2% 4986 62603s
6950 6913 129.97400 496 9257 84.82630 129.97400 53.2% 4961 62764s
7016 6984 129.97400 498 9211 84.82630 129.97400 53.2% 4935 62932s
7088 7050 129.97400 499 9208 84.82630 129.97400 53.2% 4909 63122s
7156 7124 129.97400 501 9152 84.82630 129.97400 53.2% 4882 63294s
H 7231 7124 84.9191978 129.97400 53.1% 4857 65262s
7232 7125 128.04629 963 9543 84.91920 129.97400 53.1% 4856 68579s
7234 7126 129.97400 480 1107 84.91920 129.97400 53.1% 4855 73670s
7235 7127 129.97400 363 807 84.91920 129.97400 53.1% 4854 83467s
H 7235 6770 84.9894059 129.97400 52.9% 4854 85582s
7236 6771 127.97447 456 990 84.98941 129.97400 52.9% 4853 85652s
7237 6771 118.15762 986 834 84.98941 129.97400 52.9% 4853 95654s
7238 6772 129.97400 791 1231 84.98941 129.97400 52.9% 4852 96001s
H 7238 6433 85.0532161 129.97400 52.8% 4852 104326s
H 7238 6112 85.0920524 129.97400 52.7% 4852 104327s
7239 6113 129.97400 726 799 85.09205 129.97400 52.7% 4851 105124s
7240 6113 129.97400 411 1575 85.09205 129.97400 52.7% 4851 105906s
7241 6114 128.04629 968 584 85.09205 129.97400 52.7% 4850 130104s
7242 6115 124.61704 444 1130 85.09205 129.97400 52.7% 4849 130270s`
-
Hi Ralph,
You might want to experiment with the following:
- The model is big. It has 2.5 million binary variables. It might be a good idea to ensure the presolved model is as small and as tight as possible. You can experiment with more aggressive settings for the parameters Presolve (2), Symmetry (2), and PreSparsify (1).
- The log shows that the Gurobi Optimizer is struggling in finding a good incumbent quickly. You can consider experimenting with the parameter NoRelHeurTime which enforces the Gurobi Optimizer to run the NoRel (no relaxation) heuristic before the root relaxation.
- Bumping up the default value of the Heuristics parameter and turning off the Cuts (Cuts=0) are other ideas that you can experiment with. Setting Cuts=0 makes sense because the log shows that the bound does not move from the value obtained from the root relaxation.
Best regards,
Maliheh
0 -
Thank you Maliheh. I'm running it now with Presolve=2, PreSparsify=1, Symmetry = 2,
NoRelHeurTime=700,Cuts=0,Heuristics=0.3 in the parameters. Aggressive Presolve took much longer, but it's exploring many more nodes in the same approximate time as before.Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 129.97400 0 753 -0.00000 129.97400 - - 7988s
H 0 0 7.2810187 129.97400 1685% - 7998s
H 0 0 16.4615871 129.97400 690% - 8052s
0 0 129.97400 0 567 16.46159 129.97400 690% - 9777s
H 0 0 17.7285534 129.97400 633% - 20042s
H 0 0 24.7837486 129.97400 424% - 20243s
0 2 129.97400 0 474 24.78375 129.97400 424% - 20940s
1 4 129.97400 1 1009 24.78375 129.97400 424% 60713 21161s
3 8 129.97400 2 790 24.78375 129.97400 424% 45273 21217s
7 16 129.97400 3 813 24.78375 129.97400 424% 21157 21419s
15 24 129.97400 4 811 24.78375 129.97400 424% 17315 21503s
23 32 129.97400 5 723 24.78375 129.97400 424% 12226 21534s
H 31 40 33.1828600 129.97400 292% 9387 22750s
H 35 40 39.8238175 129.97400 226% 8682 22750s
39 48 129.97400 7 772 39.82382 129.97400 226% 8147 22774s
47 60 129.97400 8 970 39.82382 129.97400 226% 7092 22880s
59 88 129.97400 9 961 39.82382 129.97400 226% 6248 24440s
H 64 88 41.2301039 129.97400 215% 5847 24440s
H 87 113 41.7123821 129.97400 212% 11735 27186s
H 98 113 45.9968559 129.97400 183% 11101 27186s
H 112 185 47.0023530 129.97400 177% 12421 30039s
H 120 185 48.1180504 129.97400 170% 13344 30039s
175 185 129.97400 12 3056 48.11805 129.97400 170% 12562 30040s
184 272 129.97400 30 1094 48.11805 129.97400 170% 12877 32011s
H 271 347 49.3286311 129.97400 163% 11005 33184s
346 411 129.97400 40 529 49.32863 129.97400 163% 9780 34932s
H 410 471 50.1459907 129.97400 159% 8770 38480s
H 424 471 52.5408294 129.97400 147% 8801 38480s
470 559 129.97400 42 525 52.54083 129.97400 147% 8235 39051s
H 558 647 52.8061270 129.97400 146% 7268 39874s
H 580 647 52.8507362 129.97400 146% 7007 39874s0 -
Hi Ralph,
I think you mean you used NoRelHeurTime=7000. It apparently did not help at all and could not find an incumbent better than the one found by a heuristic immediately after presolve. You might want to discard this parameter.
- The log again shows that the Gurobi is struggling to find a high quality incumbent. How hard is it to construct a feasible solution for this problem using a local search type heuristic? If it is relatively easy, you might want to consider providing that as an initial solution to give Gurobi a good start for proving optimality.
- You might also consider experimenting with parameters such as ImproveStartTime, ImproveStartGap, or ImproveStartNode to completely change the strategy of Gurobi and give up on proving optimality and see what the best feasible solution you might be able to get.
Best regards,
Maliheh
0
Please sign in to leave a comment.
Comments
3 comments