まずは、解くべき最適化問題の説明から始めていきます。
アメリカ造幣局の年末を想像してください。造幣局は、流通する硬貨の製造に使用される様々な鉱物の在庫を管理しており、来年の硬貨のために新しく購入する前に、手持ちの鉱物を使ってしまいたいと考えています。
造幣局は数種類の硬貨を製造していて、それぞれ成分組成が異なります。下の表は、各硬貨の組成を示しています。
Penny | Nickel | Dime | Quarter | Dollar | |
銅 (Cu) | 0.06g | 3.8g | 2.1g | 5.2g | 7.2g |
ニッケル (Ni) | 1.2g | 0.2g | 0.5g | 0.2g | |
亜鉛 (Zi) | 2.4g | 0.5g | |||
マンガン (Mn) | 0.3g |
造幣局は、現在利用可能な原料を使って、最終的な総額(ドル)が最大になるように硬貨を製造したいとします。どのように製造するとよいでしょうか?
コメント
0件のコメント
記事コメントは受け付けていません。