Termination Criteria when Incumbent and MIPGap are both " - "
回答済みI've read that Gurobi terminates when MIPGap is less than 0.01%. What if MIPGap is "-"? I'm trying to speed up this optimization (see Gurobi log below - sorry for the length of it). I'd prefer not to use a time limit, but rather have a less strict termination criteria. When I set MIPGap to something bigger than 0.01% it has no affect (I"m assuming since Gap is "-"). So my next course of action was to limit how many nodes are explored; however, I'm not sure how to choose a cut-off point. What causes the optimization below to terminate? Does Gurobi explore all possible nodes? If so, how does one calculate what that number would be (209613 in the log below) before beginning? If that's possible, then I would have a reference point to choose a percentage of nodes from the maximum.
If all of this is impossible/nonsensical, is there another way to relax the termination criteria when Gap = "-"?
Note: It's perfectly fine that the solution count is 0. I'm trying to demonstrate with a reasonable degree of certainty that no optimal solution exists.
Reading time = 0.76 seconds
: 31775 rows, 169 columns, 2474831 nonzeros
Optimize a model with 31775 rows, 169 columns and 2474831 nonzeros
Variable types: 0 continuous, 169 integer (0 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 8e+01]
Presolve removed 484 rows and 2 columns
Presolve time: 2.78s
Presolved: 31291 rows, 167 columns, 2426009 nonzeros
Variable types: 0 continuous, 167 integer (167 binary)
Root relaxation: objective 8.400000e+01, 137 iterations, 0.56 seconds
Total elapsed time = 6.11s
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 84.00000 0 54 - 84.00000 - - 7s
0 0 84.00000 0 118 - 84.00000 - - 10s
0 0 84.00000 0 119 - 84.00000 - - 11s
0 0 84.00000 0 54 - 84.00000 - - 15s
0 0 84.00000 0 96 - 84.00000 - - 18s
0 0 84.00000 0 96 - 84.00000 - - 18s
0 0 84.00000 0 60 - 84.00000 - - 22s
0 0 84.00000 0 62 - 84.00000 - - 26s
0 0 84.00000 0 62 - 84.00000 - - 27s
0 2 84.00000 0 60 - 84.00000 - - 44s
3 8 84.00000 2 119 - 84.00000 - 33.3 45s
106 76 infeasible 13 - 84.00000 - 14.3 51s
232 95 84.00000 14 80 - 84.00000 - 11.6 56s
418 102 infeasible 17 - 84.00000 - 10.3 62s
510 100 infeasible 13 - 84.00000 - 10.0 65s
698 110 84.00000 12 24 - 84.00000 - 9.8 71s
824 111 84.00000 15 76 - 84.00000 - 9.6 75s
1155 119 infeasible 17 - 84.00000 - 8.8 84s
1336 116 infeasible 16 - 84.00000 - 8.4 88s
1496 123 84.00000 10 116 - 84.00000 - 8.4 93s
1626 136 84.00000 15 84 - 84.00000 - 8.6 99s
1796 149 84.00000 9 107 - 84.00000 - 8.6 105s
1980 149 infeasible 16 - 84.00000 - 8.7 111s
2172 142 84.00000 15 72 - 84.00000 - 8.7 118s
2385 155 84.00000 15 72 - 84.00000 - 8.8 125s
2585 150 infeasible 15 - 84.00000 - 9.0 133s
2808 153 84.00000 16 24 - 84.00000 - 9.0 141s
3079 190 84.00000 18 60 - 84.00000 - 8.9 150s
3337 210 infeasible 16 - 84.00000 - 9.0 159s
3601 226 infeasible 14 - 84.00000 - 9.1 168s
3880 233 infeasible 14 - 84.00000 - 9.1 178s
4180 268 84.00000 13 48 - 84.00000 - 9.1 188s
4489 296 84.00000 14 90 - 84.00000 - 9.1 198s
4818 321 84.00000 16 36 - 84.00000 - 9.1 209s
5154 340 infeasible 17 - 84.00000 - 9.1 221s
5517 340 84.00000 7 118 - 84.00000 - 9.0 232s
5940 358 84.00000 12 118 - 84.00000 - 8.9 244s
6346 385 84.00000 14 60 - 84.00000 - 8.8 256s
6785 409 84.00000 16 72 - 84.00000 - 8.8 268s
7223 479 84.00000 10 62 - 84.00000 - 8.7 274s
7224 480 84.00000 14 62 - 84.00000 - 8.7 275s
7225 480 84.00000 13 54 - 84.00000 - 8.7 284s
7226 481 84.00000 11 62 - 84.00000 - 8.7 295s
7227 482 84.00000 8 74 - 84.00000 - 8.7 302s
7229 483 84.00000 11 54 - 84.00000 - 8.7 312s
7230 484 84.00000 13 87 - 84.00000 - 8.7 318s
7231 484 84.00000 18 60 - 84.00000 - 8.7 323s
7232 485 84.00000 12 114 - 84.00000 - 8.7 325s
7233 486 84.00000 14 86 - 84.00000 - 8.7 332s
7235 487 84.00000 16 84 - 84.00000 - 8.7 340s
7237 488 84.00000 11 96 - 84.00000 - 8.7 347s
7239 490 84.00000 9 117 - 84.00000 - 8.7 353s
7240 490 84.00000 9 117 - 84.00000 - 8.7 355s
7241 491 84.00000 11 84 - 84.00000 - 8.7 374s
7242 492 84.00000 12 84 - 84.00000 - 8.7 376s
7243 492 84.00000 8 84 - 84.00000 - 8.7 392s
7244 496 84.00000 11 119 - 84.00000 - 0.4 424s
7246 499 84.00000 12 118 - 84.00000 - 0.4 459s
7250 506 84.00000 13 118 - 84.00000 - 0.4 465s
7318 544 84.00000 17 111 - 84.00000 - 0.5 470s
7404 551 84.00000 21 99 - 84.00000 - 0.7 479s
7542 559 84.00000 17 118 - 84.00000 - 0.8 486s
7650 560 84.00000 24 95 - 84.00000 - 1.0 495s
7951 518 84.00000 22 82 - 84.00000 - 1.2 501s
8019 508 infeasible 23 - 84.00000 - 1.3 509s
8071 491 84.00000 25 24 - 84.00000 - 1.4 517s
8163 441 84.00000 27 104 - 84.00000 - 1.4 528s
8466 405 infeasible 26 - 84.00000 - 1.7 538s
8762 351 infeasible 24 - 84.00000 - 2.0 548s
9032 371 infeasible 30 - 84.00000 - 2.2 557s
9317 426 infeasible 29 - 84.00000 - 2.4 566s
9394 424 84.00000 20 112 - 84.00000 - 2.5 576s
9660 445 infeasible 29 - 84.00000 - 2.7 587s
9950 502 84.00000 23 87 - 84.00000 - 2.9 597s
10036 510 84.00000 27 115 - 84.00000 - 3.0 608s
10330 523 infeasible 29 - 84.00000 - 3.2 620s
10660 567 84.00000 25 116 - 84.00000 - 3.4 631s
10963 585 infeasible 28 - 84.00000 - 3.5 645s
11040 575 84.00000 22 86 - 84.00000 - 3.6 658s
11459 653 infeasible 26 - 84.00000 - 3.8 671s
11565 654 84.00000 23 92 - 84.00000 - 3.9 685s
11984 688 84.00000 24 111 - 84.00000 - 4.0 699s
12388 739 infeasible 27 - 84.00000 - 4.2 713s
12622 729 infeasible 27 - 84.00000 - 4.3 729s
13080 809 infeasible 31 - 84.00000 - 4.5 742s
13161 796 infeasible 27 - 84.00000 - 4.6 757s
13562 813 infeasible 27 - 84.00000 - 4.7 775s
14008 818 infeasible 30 - 84.00000 - 4.9 790s
14121 793 infeasible 28 - 84.00000 - 5.0 808s
14567 816 84.00000 21 106 - 84.00000 - 5.2 823s
14711 799 84.00000 26 64 - 84.00000 - 5.2 842s
15255 859 infeasible 25 - 84.00000 - 5.4 868s
15812 895 infeasible 27 - 84.00000 - 5.5 886s
15951 864 84.00000 27 114 - 84.00000 - 5.6 907s
16515 877 84.00000 29 102 - 84.00000 - 5.7 930s
17232 929 infeasible 32 - 84.00000 - 5.8 948s
17443 856 84.00000 27 114 - 84.00000 - 5.9 972s
18126 904 84.00000 24 24 - 84.00000 - 6.0 996s
18870 969 infeasible 27 - 84.00000 - 6.1 1016s
19104 908 infeasible 28 - 84.00000 - 6.2 1043s
19873 939 84.00000 27 113 - 84.00000 - 6.3 1070s
20620 988 infeasible 26 - 84.00000 - 6.4 1094s
20846 911 infeasible 30 - 84.00000 - 6.5 1125s
21706 925 84.00000 27 109 - 84.00000 - 6.6 1157s
22631 1053 84.00000 17 107 - 84.00000 - 6.7 1183s
22851 990 84.00000 28 118 - 84.00000 - 6.8 1215s
23668 1020 84.00000 27 66 - 84.00000 - 6.9 1251s
24645 1120 infeasible 30 - 84.00000 - 7.0 1286s
25431 1162 84.00000 28 116 - 84.00000 - 7.1 1324s
26437 1268 infeasible 31 - 84.00000 - 7.3 1353s
26768 1193 84.00000 30 111 - 84.00000 - 7.3 1393s
27746 1203 infeasible 27 - 84.00000 - 7.5 1435s
28836 1304 84.00000 24 112 - 84.00000 - 7.6 1476s
29902 1461 84.00000 25 66 - 84.00000 - 7.7 1658s
30228 1374 84.00000 31 117 - 84.00000 - 7.7 1701s
31326 1457 84.00000 28 113 - 84.00000 - 7.8 1745s
32447 1453 infeasible 29 - 84.00000 - 8.0 1785s
33452 1569 infeasible 28 - 84.00000 - 8.1 1816s
33749 1478 infeasible 28 - 84.00000 - 8.1 1856s
34714 1479 84.00000 22 115 - 84.00000 - 8.2 1897s
35817 1531 infeasible 26 - 84.00000 - 8.3 1938s
36808 1630 infeasible 29 - 84.00000 - 8.4 1971s
37145 1532 84.00000 22 119 - 84.00000 - 8.4 2012s
38177 1601 84.00000 25 115 - 84.00000 - 8.5 2053s
39215 1729 84.00000 25 119 - 84.00000 - 8.6 2096s
40285 1949 infeasible 29 - 84.00000 - 8.7 2127s
40602 1895 84.00000 28 114 - 84.00000 - 8.7 2167s
41516 1905 84.00000 31 60 - 84.00000 - 8.8 2208s
42378 1861 84.00000 25 90 - 84.00000 - 8.8 2249s
43338 1933 84.00000 25 102 - 84.00000 - 8.9 2283s
43746 1900 84.00000 27 118 - 84.00000 - 8.9 2325s
44671 1978 infeasible 30 - 84.00000 - 9.0 2374s
45679 2011 infeasible 32 - 84.00000 - 9.1 2418s
46677 2120 infeasible 27 - 84.00000 - 9.2 2451s
46979 2010 infeasible 31 - 84.00000 - 9.2 2494s
47958 2002 84.00000 25 119 - 84.00000 - 9.3 2539s
48986 2122 infeasible 29 - 84.00000 - 9.3 2576s
49427 2097 84.00000 24 119 - 84.00000 - 9.3 2622s
50567 2209 infeasible 31 - 84.00000 - 9.4 2667s
51671 2300 84.00000 27 119 - 84.00000 - 9.4 2712s
52737 2437 84.00000 22 116 - 84.00000 - 9.5 2745s
53064 2345 84.00000 27 115 - 84.00000 - 9.5 2790s
54153 2404 84.00000 32 102 - 84.00000 - 9.5 2833s
55208 2443 84.00000 29 95 - 84.00000 - 9.6 2879s
56314 2562 infeasible 29 - 84.00000 - 9.6 2911s
56630 2494 infeasible 27 - 84.00000 - 9.7 2955s
57637 2546 84.00000 23 105 - 84.00000 - 9.7 2998s
58739 2674 infeasible 30 - 84.00000 - 9.7 3033s
59097 2572 infeasible 29 - 84.00000 - 9.7 3082s
60201 2658 infeasible 30 - 84.00000 - 9.8 3123s
61211 2643 infeasible 26 - 84.00000 - 9.8 3166s
62326 2772 84.00000 23 102 - 84.00000 - 9.8 3199s
62671 2695 84.00000 27 88 - 84.00000 - 9.8 3243s
63793 2734 84.00000 30 114 - 84.00000 - 9.8 3287s
64866 2780 infeasible 28 - 84.00000 - 9.9 3329s
65892 2870 infeasible 30 - 84.00000 - 9.9 3364s
66376 2810 infeasible 28 - 84.00000 - 9.9 3407s
67416 2879 84.00000 28 108 - 84.00000 - 9.9 3449s
68432 2903 84.00000 27 108 - 84.00000 - 9.9 3493s
69500 2964 infeasible 26 - 84.00000 - 10.0 3526s
69835 2840 84.00000 23 102 - 84.00000 - 10.0 3568s
70890 2918 infeasible 34 - 84.00000 - 10.0 3613s
71903 3051 infeasible 35 - 84.00000 - 10.0 3649s
72248 2984 infeasible 26 - 84.00000 - 10.0 3694s
73294 3017 84.00000 30 112 - 84.00000 - 10.0 3740s
74440 3099 infeasible 27 - 84.00000 - 10.1 3788s
75540 3203 infeasible 28 - 84.00000 - 10.1 3825s
76100 3172 84.00000 25 117 - 84.00000 - 10.1 3870s
77131 3221 84.00000 23 116 - 84.00000 - 10.1 3912s
78104 3287 infeasible 28 - 84.00000 - 10.2 3946s
78437 3208 84.00000 28 111 - 84.00000 - 10.2 3990s
79460 3271 infeasible 30 - 84.00000 - 10.2 4035s
80483 3302 infeasible 26 - 84.00000 - 10.2 4079s
81421 3380 84.00000 28 114 - 84.00000 - 10.2 4115s
81752 3310 infeasible 31 - 84.00000 - 10.3 4160s
82775 3357 84.00000 25 119 - 84.00000 - 10.3 4206s
83891 3475 infeasible 30 - 84.00000 - 10.3 4248s
84597 3505 84.00000 23 119 - 84.00000 - 10.3 4294s
85680 3589 84.00000 25 114 - 84.00000 - 10.3 4338s
86612 3664 84.00000 26 24 - 84.00000 - 10.3 4375s
87024 3580 84.00000 26 116 - 84.00000 - 10.4 4420s
88085 3568 84.00000 28 88 - 84.00000 - 10.4 4463s
89132 3583 infeasible 25 - 84.00000 - 10.4 4505s
90126 3641 infeasible 24 - 84.00000 - 10.4 4551s
90867 3665 84.00000 25 117 - 84.00000 - 10.4 4599s
91993 3817 infeasible 27 - 84.00000 - 10.4 4637s
92546 3795 infeasible 30 - 84.00000 - 10.4 4684s
93590 3819 84.00000 26 115 - 84.00000 - 10.5 4730s
94634 3919 infeasible 27 - 84.00000 - 10.5 4766s
95016 3838 84.00000 27 113 - 84.00000 - 10.5 4812s
96065 3875 84.00000 25 115 - 84.00000 - 10.5 4859s
97111 3894 infeasible 30 - 84.00000 - 10.5 4906s
98203 4010 infeasible 28 - 84.00000 - 10.6 4942s
98590 3911 84.00000 27 85 - 84.00000 - 10.6 4988s
99673 3929 infeasible 27 - 84.00000 - 10.6 5033s
100746 3977 infeasible 30 - 84.00000 - 10.6 5079s
101847 4113 84.00000 23 60 - 84.00000 - 10.6 5116s
102251 3995 84.00000 28 108 - 84.00000 - 10.6 5161s
103358 4023 84.00000 26 118 - 84.00000 - 10.6 5204s
104349 4069 84.00000 30 60 - 84.00000 - 10.6 5250s
105403 4162 infeasible 27 - 84.00000 - 10.6 5292s
105909 4128 84.00000 25 109 - 84.00000 - 10.6 5336s
106973 4180 infeasible 29 - 84.00000 - 10.7 5382s
108104 4239 84.00000 27 119 - 84.00000 - 10.7 5427s
109191 4388 infeasible 26 - 84.00000 - 10.7 5461s
109542 4293 infeasible 26 - 84.00000 - 10.7 5505s
110633 4314 84.00000 27 60 - 84.00000 - 10.7 5549s
111673 4330 infeasible 24 - 84.00000 - 10.7 5593s
112753 4425 84.00000 26 119 - 84.00000 - 10.7 5626s
113164 4344 infeasible 28 - 84.00000 - 10.7 5670s
114258 4391 infeasible 25 - 84.00000 - 10.7 5712s
115412 4415 84.00000 27 116 - 84.00000 - 10.7 5755s
116512 4519 84.00000 31 103 - 84.00000 - 10.7 5789s
116990 4439 84.00000 27 93 - 84.00000 - 10.7 5831s
118016 4487 84.00000 24 60 - 84.00000 - 10.7 5874s
119063 4523 infeasible 27 - 84.00000 - 10.7 5913s
119852 4458 infeasible 32 - 84.00000 - 10.7 5955s
120820 4493 infeasible 28 - 84.00000 - 10.7 5990s
121121 4380 infeasible 29 - 84.00000 - 10.7 6033s
122147 4330 infeasible 25 - 84.00000 - 10.7 6076s
123166 4361 84.00000 27 119 - 84.00000 - 10.7 6115s
123805 4253 84.00000 27 116 - 84.00000 - 10.7 6160s
124868 4235 84.00000 28 119 - 84.00000 - 10.8 6202s
125595 4159 84.00000 27 118 - 84.00000 - 10.8 6246s
126562 4222 infeasible 28 - 84.00000 - 10.8 6281s
126919 4086 84.00000 29 112 - 84.00000 - 10.8 6324s
127893 4060 infeasible 27 - 84.00000 - 10.8 6369s
128882 3993 84.00000 23 119 - 84.00000 - 10.8 6412s
129847 4074 infeasible 28 - 84.00000 - 10.8 6448s
130240 3962 infeasible 29 - 84.00000 - 10.8 6494s
131271 3959 infeasible 29 - 84.00000 - 10.8 6542s
132244 3909 infeasible 27 - 84.00000 - 10.8 6583s
133178 3874 84.00000 26 118 - 84.00000 - 10.9 6626s
134004 3800 infeasible 28 - 84.00000 - 10.9 6670s
134910 3843 84.00000 28 114 - 84.00000 - 10.9 6707s
135319 3722 84.00000 28 117 - 84.00000 - 10.9 6750s
136255 3671 infeasible 28 - 84.00000 - 10.9 6795s
137232 3617 infeasible 31 - 84.00000 - 10.9 6837s
138156 3640 infeasible 24 - 84.00000 - 10.9 6873s
138574 3513 infeasible 26 - 84.00000 - 10.9 6922s
139653 3467 84.00000 29 81 - 84.00000 - 10.9 6964s
140580 3406 infeasible 25 - 84.00000 - 10.9 7005s
141540 3370 infeasible 26 - 84.00000 - 10.9 7048s
142364 3317 infeasible 31 - 84.00000 - 11.0 7090s
143325 3379 84.00000 25 119 - 84.00000 - 11.0 7126s
143677 3250 84.00000 26 115 - 84.00000 - 11.0 7171s
144729 3212 84.00000 27 105 - 84.00000 - 11.0 7211s
145646 3147 84.00000 24 48 - 84.00000 - 11.0 7252s
146565 3181 infeasible 25 - 84.00000 - 11.0 7288s
146921 3045 infeasible 27 - 84.00000 - 11.0 7331s
147925 2982 infeasible 27 - 84.00000 - 11.0 7373s
148870 3010 84.00000 24 104 - 84.00000 - 11.0 7411s
149397 2906 84.00000 29 114 - 84.00000 - 11.0 7457s
150517 2865 84.00000 28 96 - 84.00000 - 11.0 7494s
151295 2843 infeasible 27 - 84.00000 - 11.0 7533s
151824 2701 84.00000 28 110 - 84.00000 - 11.0 7574s
152792 2645 infeasible 25 - 84.00000 - 11.0 7616s
153793 2632 infeasible 30 - 84.00000 - 11.0 7661s
154916 2731 infeasible 29 - 84.00000 - 11.0 7701s
155275 2616 84.00000 29 60 - 84.00000 - 11.0 7745s
156311 2558 84.00000 27 114 - 84.00000 - 11.0 7786s
157263 2487 infeasible 29 - 84.00000 - 11.0 7828s
158190 2465 infeasible 29 - 84.00000 - 11.0 7863s
158557 2332 infeasible 27 - 84.00000 - 11.0 7908s
159601 2317 infeasible 24 - 84.00000 - 11.1 7954s
160694 2404 infeasible 28 - 84.00000 - 11.1 7990s
161131 2286 84.00000 26 116 - 84.00000 - 11.1 8028s
162051 2231 infeasible 24 - 84.00000 - 11.1 8070s
162988 2149 infeasible 29 - 84.00000 - 11.1 8110s
163941 2149 infeasible 32 - 84.00000 - 11.1 8147s
164409 2045 infeasible 29 - 84.00000 - 11.1 8191s
165342 1988 84.00000 32 54 - 84.00000 - 11.1 8231s
166221 1919 infeasible 29 - 84.00000 - 11.1 8274s
167224 1858 84.00000 22 103 - 84.00000 - 11.1 8314s
168156 1885 84.00000 23 95 - 84.00000 - 11.1 8349s
168509 1778 84.00000 29 107 - 84.00000 - 11.1 8394s
169617 1746 infeasible 29 - 84.00000 - 11.1 8437s
170609 1742 infeasible 28 - 84.00000 - 11.1 8477s
171221 1627 84.00000 27 118 - 84.00000 - 11.1 8521s
172326 1603 84.00000 24 119 - 84.00000 - 11.1 8564s
173254 1597 infeasible 29 - 84.00000 - 11.1 8604s
173932 1514 84.00000 27 111 - 84.00000 - 11.1 8643s
174870 1479 infeasible 27 - 84.00000 - 11.1 8682s
175782 1478 84.00000 22 80 - 84.00000 - 11.1 8716s
176178 1351 84.00000 24 106 - 84.00000 - 11.1 8760s
177229 1290 infeasible 29 - 84.00000 - 11.1 8801s
178171 1219 84.00000 23 112 - 84.00000 - 11.1 8844s
179137 1240 84.00000 27 119 - 84.00000 - 11.1 8882s
179506 1122 84.00000 26 118 - 84.00000 - 11.1 8924s
180479 1055 infeasible 33 - 84.00000 - 11.1 8965s
181507 1055 infeasible 28 - 84.00000 - 11.1 9006s
182269 967 infeasible 29 - 84.00000 - 11.1 9049s
183326 991 infeasible 27 - 84.00000 - 11.1 9088s
183958 892 infeasible 30 - 84.00000 - 11.1 9131s
184973 876 84.00000 23 107 - 84.00000 - 11.1 9173s
185984 919 infeasible 33 - 84.00000 - 11.1 9209s
186412 819 84.00000 24 117 - 84.00000 - 11.2 9254s
187532 830 infeasible 26 - 84.00000 - 11.1 9302s
188682 826 infeasible 27 - 84.00000 - 11.1 9342s
189734 901 84.00000 23 60 - 84.00000 - 11.1 9376s
190108 789 infeasible 23 - 84.00000 - 11.1 9418s
191239 773 infeasible 26 - 84.00000 - 11.1 9461s
191983 757 84.00000 26 36 - 84.00000 - 11.1 9498s
192484 677 84.00000 29 111 - 84.00000 - 11.1 9545s
193545 722 84.00000 27 115 - 84.00000 - 11.2 9591s
194580 700 infeasible 26 - 84.00000 - 11.2 9634s
195515 698 infeasible 29 - 84.00000 - 11.2 9672s
195924 601 84.00000 26 117 - 84.00000 - 11.2 9717s
196955 614 infeasible 28 - 84.00000 - 11.2 9762s
198021 603 infeasible 25 - 84.00000 - 11.2 9806s
199121 593 84.00000 23 84 - 84.00000 - 11.2 9844s
199726 502 infeasible 29 - 84.00000 - 11.2 9888s
200748 568 infeasible 28 - 84.00000 - 11.2 9924s
201130 445 infeasible 28 - 84.00000 - 11.2 9968s
202171 410 84.00000 24 116 - 84.00000 - 11.2 10012s
203154 376 infeasible 30 - 84.00000 - 11.2 10057s
204166 394 infeasible 28 - 84.00000 - 11.2 10091s
204478 250 84.00000 28 106 - 84.00000 - 11.2 10133s
205414 195 84.00000 25 114 - 84.00000 - 11.2 10180s
206425 244 infeasible 29 - 84.00000 - 11.2 10219s
206899 127 84.00000 23 115 - 84.00000 - 11.2 10263s
207831 45 84.00000 29 118 - 84.00000 - 11.3 10303s
208697 30 84.00000 24 118 - 84.00000 - 11.3 10341s
209241 0 infeasible 28 - 84.00000 - 11.3 10359s
209613 0 infeasible 28 - 84.00000 - 11.3 10365s
Cutting planes:
Cover: 1
Inf proof: 1
Zero half: 1
Explored 209748 nodes (2427112 simplex iterations) in 10368.84 seconds
Thread count was 16 (of 16 available processors)
Solution count 0
Model is infeasible or unbounded
Best objective -, best bound -, gap -
-
正式なコメント
This post is more than three years old. Some information may not be up to date. For current information, please check the Gurobi Documentation or Knowledge Base. If you need more help, please create a new post in the community forum. Or why not try our AI Gurobot?. -
The MIP gap is defined as the relative difference of the current incumbent value and the best bound. If there is no incumbent, then there is no MIP gap.
In your run, Gurobi did indeed stop because it had exhaustively explored all nodes in the tree. However, I am not aware of any way to know/guess the number of nodes before running the solver. In fact, the number of nodes can depend on a lot of things: With a different solver path (e.g. with different settings, different random seeds, or just a different order of variables or constraints), the number of nodes may differ significantly.
0 -
Hi Silke,
Thanks for the response. So is the only way to speed this computation up by setting a max node limit or a max time limit (or both)? Based on your experience, would you have a suggested max node limit? Also, as Gurobi continues to search more and more nodes, does the probability of finding a solution decrease or is it static throughout the whole process?
Dan
0 -
Hi Dan,
I guess I would go for a time limit and set it to the maximum duration you are willing to wait.
You could also experiment with different branching strategies (BranchDir or VarBranch) or other parameter settings to see whether they lead to faster results.
I don't know the probability distribution of when the first solution is found. Since this really depends on the model and the solver path, I doubt that a general answer would help you much with your model.
Silke
0
投稿コメントは受け付けていません。
コメント
4件のコメント