Gurobi stuck at gap=100%
Awaiting user inputI was trying to iteratively add cuts to a model written in pyomo. The model has quadratic constraints and binary variables. Gurobi can solve the model after adding two cuts, but after the third cut was added, it gets stuck and runs forever. I am new to Gurobi and not sure how to interpret the log which was attached below. Could someone let me know what might be wrong with my model? What troubleshooting might be helpful? I tried to set Cuts=0 but it still got stuck. Thank you so much!
Academic license - for non-commercial use only - expires 2021-07-28
Using license file /Users/apple/gurobi.lic
Read LP format model from file /var/folders/5d/97s4nrgn7qb3gycz0h0g0br40000gn/T/tmp11c54_2n.pyomo.lp
Reading time = 0.00 seconds
x138: 136 rows, 138 columns, 1141 nonzeros
Gurobi Optimizer version 9.1.1 build v9.1.1rc0 (mac64)
Thread count: 2 physical cores, 4 logical processors, using up to 4 threads
Optimize a model with 136 rows, 138 columns and 1141 nonzeros
Model fingerprint: 0x90650dbb
Model has 46 quadratic constraints
Variable types: 48 continuous, 90 integer (90 binary)
Coefficient statistics:
Matrix range [1e-04, 4e+02]
QMatrix range [1e-04, 1e+00]
QLMatrix range [2e-01, 3e+01]
Objective range [9e-01, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
QRHS range [6e+02, 6e+02]
Presolve removed 46 rows and 46 columns
Presolve time: 0.00s
Presolved: 1096 rows, 1547 columns, 4001 nonzeros
Presolved model has 960 SOS constraint(s)
Presolved model has 15 quadratic constraint(s)
Variable types: 1022 continuous, 525 integer (525 binary)
Root relaxation: objective 6.517907e+02, 490 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 651.79068 0 96 - 651.79068 - - 0s
0 0 651.79068 0 97 - 651.79068 - - 0s
0 0 651.79068 0 98 - 651.79068 - - 0s
0 0 651.79068 0 99 - 651.79068 - - 0s
0 0 651.79068 0 100 - 651.79068 - - 0s
0 0 651.79068 0 101 - 651.79068 - - 0s
0 0 651.79068 0 102 - 651.79068 - - 0s
0 0 651.79068 0 102 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 0 651.79068 0 103 - 651.79068 - - 0s
0 2 651.79068 0 103 - 651.79068 - - 0s
7094 2169 infeasible 34 - 651.79068 - 31.4 5s
15082 3451 639.62348 36 13 - 639.62348 - 32.2 10s
23300 5320 253.17931 31 63 - 601.63032 - 32.5 15s
32737 6788 infeasible 37 - 555.35574 - 31.6 20s
41852 7495 119.04090 34 53 - 513.56636 - 31.4 25s
52104 6721 3.26807 33 54 - 334.35700 - 30.2 30s
61079 6242 infeasible 36 - 217.65336 - 29.6 35s
H68444 7373 -0.0000240 199.60741 - 29.7 39s
*68444 7373 47 -0.0000240 199.60741 - 29.7 39s
69965 7165 cutoff 38 -0.00002 176.46398 - 29.7 40s
79366 5931 53.31221 34 44 -0.00002 105.98417 - 29.3 45s
87753 5618 infeasible 33 -0.00002 72.50980 - 29.1 50s
94627 4594 33.00276 37 21 -0.00002 38.32267 - 29.0 55s
102730 4719 cutoff 39 -0.00002 21.13865 - 29.0 60s
*106341 4039 47 -0.0000087 4.57487 - 28.9 61s
110526 4759 -0.00000 34 18 -0.00001 0.00000 100% 29.0 65s
118780 4964 -0.00000 34 36 -0.00001 -0.00000 100% 29.3 70s
126977 5179 infeasible 36 -0.00001 -0.00000 100% 29.6 75s
134151 5672 -0.00000 37 21 -0.00001 -0.00000 100% 29.8 80s
141288 6091 infeasible 32 -0.00001 -0.00000 100% 30.2 85s
147055 6364 -0.00000 28 18 -0.00001 -0.00000 100% 30.4 90s
152029 6536 -0.00000 31 15 -0.00001 -0.00000 100% 30.6 95s
156282 6638 infeasible 31 -0.00001 -0.00000 100% 30.7 100s
160399 6791 infeasible 33 -0.00001 -0.00000 100% 30.7 105s
165426 6965 -0.00000 28 39 -0.00001 -0.00000 100% 30.8 110s
171451 7226 -0.00000 33 42 -0.00001 -0.00000 100% 30.9 115s
174626 7303 cutoff 32 -0.00001 -0.00000 100% 31.0 120s
178287 7386 -0.00000 35 28 -0.00001 -0.00000 100% 31.2 125s
182907 7401 infeasible 36 -0.00001 -0.00000 100% 31.3 130s
186977 7496 infeasible 32 -0.00001 -0.00000 100% 31.4 135s
192048 7560 infeasible 36 -0.00001 -0.00000 100% 31.6 140s
197703 7724 -0.00000 34 34 -0.00001 -0.00000 100% 31.9 145s
203139 7942 infeasible 32 -0.00001 -0.00000 100% 32.0 151s
206737 7970 -0.00000 24 17 -0.00001 -0.00000 100% 32.1 155s
211537 8183 infeasible 30 -0.00001 -0.00000 100% 32.2 160s
218430 8310 -0.00000 30 55 -0.00001 -0.00000 100% 32.3 165s
223929 8422 -0.00000 29 11 -0.00001 -0.00000 100% 32.4 170s
230948 8589 infeasible 31 -0.00001 -0.00000 100% 32.5 175s
237591 8720 -0.00000 33 21 -0.00001 -0.00000 100% 32.6 180s
244044 9001 infeasible 33 -0.00001 -0.00000 100% 32.7 185s
249700 9187 cutoff 34 -0.00001 -0.00000 100% 32.8 190s
256064 9373 -0.00000 31 62 -0.00001 -0.00000 100% 32.9 195s
262308 9466 infeasible 33 -0.00001 -0.00000 100% 33.0 200s
268323 9626 -0.00000 31 25 -0.00001 -0.00000 100% 33.0 205s
274244 9907 infeasible 31 -0.00001 -0.00000 100% 33.1 210s
279917 9973 -0.00000 34 13 -0.00001 -0.00000 100% 33.2 215s
287106 10118 -0.00000 20 14 -0.00001 -0.00000 100% 33.2 220s
294280 10219 -0.00000 34 22 -0.00001 -0.00000 100% 33.3 225s
301710 10370 infeasible 36 -0.00001 -0.00000 100% 33.3 230s
309195 10674 -0.00000 34 21 -0.00001 -0.00000 100% 33.3 235s
314464 10911 infeasible 31 -0.00001 -0.00000 100% 33.3 240s
321388 11061 -0.00000 31 82 -0.00001 -0.00000 100% 33.3 245s
327203 11276 -0.00000 28 84 -0.00001 -0.00000 100% 33.4 250s
331924 11420 -0.00000 29 56 -0.00001 -0.00000 100% 33.4 255s
337055 11667 infeasible 34 -0.00001 -0.00000 100% 33.4 260s
340547 11838 infeasible 34 -0.00001 -0.00000 100% 33.5 265s
343283 11923 infeasible 31 -0.00001 -0.00000 100% 33.5 270s
345093 11963 infeasible 34 -0.00001 -0.00000 100% 33.5 275s
348119 11991 -0.00000 31 48 -0.00001 -0.00000 100% 33.5 280s
352968 12111 infeasible 40 -0.00001 -0.00000 100% 33.6 285s
359813 12311 -0.00000 34 24 -0.00001 -0.00000 100% 33.6 290s
365890 12331 -0.00000 33 29 -0.00001 -0.00000 100% 33.6 295s
372360 12396 infeasible 35 -0.00001 -0.00000 100% 33.6 300s
376304 12430 infeasible 31 -0.00001 -0.00000 100% 33.7 305s
381307 12432 infeasible 34 -0.00001 -0.00000 100% 33.7 310s
386196 12414 -0.00000 33 21 -0.00001 -0.00000 100% 33.8 315s
391903 12352 -0.00000 34 20 -0.00001 -0.00000 100% 33.8 320s
396992 12480 -0.00000 31 20 -0.00001 -0.00000 100% 33.8 325s
402793 12658 infeasible 36 -0.00001 -0.00000 100% 33.9 330s
406371 12721 infeasible 30 -0.00001 -0.00000 100% 33.9 335s
411248 12808 infeasible 36 -0.00001 -0.00000 100% 33.9 340s
416346 12858 cutoff 35 -0.00001 -0.00000 100% 34.0 345s
421220 12817 infeasible 35 -0.00001 -0.00000 100% 34.1 350s
426444 12797 cutoff 35 -0.00001 -0.00000 100% 34.1 355s
429919 12799 -0.00000 36 27 -0.00001 -0.00000 100% 34.2 360s
434269 12863 cutoff 39 -0.00001 -0.00000 100% 34.2 365s
440115 12836 infeasible 37 -0.00001 -0.00000 100% 34.3 370s
445019 12832 -0.00000 36 35 -0.00001 -0.00000 100% 34.3 375s
448547 12804 infeasible 33 -0.00001 -0.00000 100% 34.3 380s
455327 12762 infeasible 37 -0.00001 -0.00000 100% 34.4 385s
460671 12710 infeasible 36 -0.00001 -0.00000 100% 34.4 390s
466002 12681 infeasible 36 -0.00001 -0.00000 100% 34.5 395s
469343 12675 infeasible 36 -0.00001 -0.00000 100% 34.5 400s
473417 12657 infeasible 37 -0.00001 -0.00000 100% 34.6 405s
476888 12642 -0.00000 34 13 -0.00001 -0.00000 100% 34.6 410s
480758 12671 -0.00000 33 42 -0.00001 -0.00000 100% 34.7 415s
484255 12765 -0.00000 35 36 -0.00001 -0.00000 100% 34.7 420s
490375 12801 infeasible 36 -0.00001 -0.00000 100% 34.7 425s
494077 12773 infeasible 34 -0.00001 -0.00000 100% 34.8 430s
500860 12727 cutoff 38 -0.00001 -0.00000 100% 34.8 435s
507678 12919 infeasible 36 -0.00001 -0.00000 100% 34.8 440s
514339 12957 -0.00000 33 38 -0.00001 -0.00000 100% 34.8 445s
520998 12977 -0.00000 36 11 -0.00001 -0.00000 100% 34.8 450s
526522 13002 -0.00000 33 14 -0.00001 -0.00000 100% 34.8 455s
532050 13014 -0.00000 24 30 -0.00001 -0.00000 100% 34.9 460s
537569 13031 infeasible 31 -0.00001 -0.00000 100% 34.9 465s
542640 13217 -0.00000 31 23 -0.00001 -0.00000 100% 34.9 470s
546849 13347 infeasible 35 -0.00001 -0.00000 100% 34.9 475s
551622 13516 infeasible 30 -0.00001 -0.00000 100% 34.9 480s
558262 13686 infeasible 33 -0.00001 -0.00000 100% 34.9 485s
562415 13746 -0.00000 33 14 -0.00001 -0.00000 100% 34.9 490s
566659 13837 infeasible 33 -0.00001 -0.00000 100% 34.9 495s
572112 13813 infeasible 32 -0.00001 -0.00000 100% 34.9 500s
576577 13934 infeasible 31 -0.00001 -0.00000 100% 34.9 505s
582329 14071 infeasible 38 -0.00001 -0.00000 100% 34.8 510s
586134 14149 infeasible 34 -0.00001 -0.00000 100% 34.8 515s
590302 14197 -0.00000 31 50 -0.00001 -0.00000 100% 34.8 520s
595888 14164 infeasible 37 -0.00001 -0.00000 100% 34.8 525s
601018 14303 -0.00000 31 35 -0.00001 -0.00000 100% 34.8 530s
606085 14377 infeasible 31 -0.00001 -0.00000 100% 34.8 535s
612936 14399 -0.00000 29 38 -0.00001 -0.00000 100% 34.8 540s
618291 14432 -0.00000 28 32 -0.00001 -0.00000 100% 34.8 545s
623723 14483 -0.00000 35 30 -0.00001 -0.00000 100% 34.8 550s
628356 14474 -0.00000 27 19 -0.00001 -0.00000 100% 34.7 555s
634046 14533 -0.00000 24 86 -0.00001 -0.00000 100% 34.7 560s
638535 14603 -0.00000 34 13 -0.00001 -0.00000 100% 34.7 565s
644505 14655 infeasible 32 -0.00001 -0.00000 100% 34.7 570s
650622 14648 -0.00000 28 12 -0.00001 -0.00000 100% 34.7 575s
654882 14631 -0.00000 29 12 -0.00001 -0.00000 100% 34.7 580s
659018 14635 -0.00000 32 38 -0.00001 -0.00000 100% 34.7 585s
664511 14605 infeasible 33 -0.00001 -0.00000 100% 34.7 590s
671503 14669 -0.00000 33 45 -0.00001 -0.00000 100% 34.7 595s
678656 14659 -0.00000 31 50 -0.00001 -0.00000 100% 34.7 600s
684795 14705 -0.00000 30 56 -0.00001 -0.00000 100% 34.7 605s
692181 14625 infeasible 36 -0.00001 -0.00000 100% 34.8 610s
698502 14612 -0.00000 33 21 -0.00001 -0.00000 100% 34.8 615s
705651 14688 -0.00000 35 8 -0.00001 -0.00000 100% 34.8 620s
712510 14653 -0.00000 31 24 -0.00001 -0.00000 100% 34.8 625s
719760 14717 -0.00000 36 18 -0.00001 -0.00000 100% 34.8 630s
725529 14656 infeasible 35 -0.00001 -0.00000 100% 34.8 635s
732386 14694 infeasible 37 -0.00001 -0.00000 100% 34.8 640s
738454 14831 -0.00000 36 11 -0.00001 -0.00000 100% 34.8 645s
743353 14908 infeasible 36 -0.00001 -0.00000 100% 34.8 650s
748257 14943 -0.00000 35 17 -0.00001 -0.00000 100% 34.8 656s
750510 15001 -0.00000 33 35 -0.00001 -0.00000 100% 34.8 660s
756219 15173 infeasible 37 -0.00001 -0.00000 100% 34.8 665s
763215 15366 -0.00000 34 29 -0.00001 -0.00000 100% 34.8 670s
770045 15488 -0.00000 29 26 -0.00001 -0.00000 100% 34.8 675s
776259 15613 infeasible 34 -0.00001 -0.00000 100% 34.7 680s
781441 15669 -0.00000 31 15 -0.00001 -0.00000 100% 34.7 685s
786248 15672 -0.00000 31 15 -0.00001 -0.00000 100% 34.7 690s
789665 15738 -0.00000 32 75 -0.00001 -0.00000 100% 34.7 695s
792568 15801 infeasible 31 -0.00001 -0.00000 100% 34.7 700s
796113 15840 cutoff 35 -0.00001 -0.00000 100% 34.7 705s
798815 15860 -0.00000 34 34 -0.00001 -0.00000 100% 34.7 710s
803203 15868 -0.00000 33 27 -0.00001 -0.00000 100% 34.7 715s
809340 15897 -0.00000 35 12 -0.00001 -0.00000 100% 34.7 720s
812422 15967 -0.00000 33 42 -0.00001 -0.00000 100% 34.7 725s
817861 16037 -0.00000 32 29 -0.00001 -0.00000 100% 34.7 730s
821939 16092 infeasible 35 -0.00001 -0.00000 100% 34.7 735s
827914 16096 infeasible 35 -0.00001 -0.00000 100% 34.7 740s
833045 16105 infeasible 36 -0.00001 -0.00000 100% 34.7 745s
835876 16085 -0.00000 35 20 -0.00001 -0.00000 100% 34.7 750s
841451 16123 infeasible 34 -0.00001 -0.00000 100% 34.7 755s
847330 16166 infeasible 36 -0.00001 -0.00000 100% 34.7 760s
850797 16208 -0.00000 39 8 -0.00001 -0.00000 100% 34.7 765s
856055 16218 -0.00000 36 67 -0.00001 -0.00000 100% 34.7 770s
860858 16272 infeasible 37 -0.00001 -0.00000 100% 34.8 775s
866431 16275 infeasible 33 -0.00001 -0.00000 100% 34.8 780s
871349 16366 -0.00000 35 20 -0.00001 -0.00000 100% 34.8 785s
878121 16349 infeasible 35 -0.00001 -0.00000 100% 34.7 790s
884759 16365 -0.00000 35 23 -0.00001 -0.00000 100% 34.7 795s
891091 16442 -0.00000 35 18 -0.00001 -0.00000 100% 34.7 800s
896130 16558 infeasible 31 -0.00001 -0.00000 100% 34.7 805s
903902 16696 infeasible 36 -0.00001 -0.00000 100% 34.7 810s
908525 16770 infeasible 34 -0.00001 -0.00000 100% 34.7 815s
915874 16891 infeasible 31 -0.00001 -0.00000 100% 34.7 820s
921829 16958 -0.00000 29 22 -0.00001 -0.00000 100% 34.6 825s
928896 17149 infeasible 34 -0.00001 -0.00000 100% 34.6 830s
935386 17156 -0.00000 29 17 -0.00001 -0.00000 100% 34.6 835s
941791 17246 infeasible 34 -0.00001 -0.00000 100% 34.6 840s
948140 17391 infeasible 35 -0.00001 -0.00000 100% 34.6 845s
954378 17561 infeasible 36 -0.00001 -0.00000 100% 34.6 850s
959558 17632 infeasible 32 -0.00001 -0.00000 100% 34.6 855s
965410 17794 infeasible 30 -0.00001 -0.00000 100% 34.6 860s
971708 17789 infeasible 36 -0.00001 -0.00000 100% 34.6 865s
979021 17944 infeasible 34 -0.00001 -0.00000 100% 34.5 870s
984771 18169 -0.00000 33 24 -0.00001 -0.00000 100% 34.5 875s
991811 18387 infeasible 40 -0.00001 -0.00000 100% 34.5 880s
997748 18530 -0.00000 37 10 -0.00001 -0.00000 100% 34.5 885s
1003378 18625 -0.00000 33 30 -0.00001 -0.00000 100% 34.5 890s
1008580 18678 cutoff 39 -0.00001 -0.00000 100% 34.4 895s
1014744 18686 cutoff 35 -0.00001 -0.00000 100% 34.4 900s
1021416 18837 infeasible 33 -0.00001 -0.00000 100% 34.4 905s
1026853 19028 infeasible 33 -0.00001 -0.00000 100% 34.4 910s
1032384 19331 infeasible 33 -0.00001 -0.00000 100% 34.4 915s
1037942 19556 infeasible 36 -0.00001 -0.00000 100% 34.4 920s
1044301 19751 -0.00000 31 47 -0.00001 -0.00000 100% 34.3 925s
1051168 19941 infeasible 35 -0.00001 -0.00000 100% 34.3 930s
1057810 20059 -0.00000 33 50 -0.00001 -0.00000 100% 34.3 935s
1064742 20158 -0.00000 32 61 -0.00001 -0.00000 100% 34.3 940s
1071468 20395 infeasible 33 -0.00001 -0.00000 100% 34.3 945s
1077524 20515 infeasible 37 -0.00001 -0.00000 100% 34.3 950s
1084046 20585 infeasible 32 -0.00001 -0.00000 100% 34.2 955s
1089647 20775 infeasible 29 -0.00001 -0.00000 100% 34.2 960s
1096181 20862 -0.00000 33 13 -0.00001 -0.00000 100% 34.2 965s
1100767 20952 -0.00000 29 42 -0.00001 -0.00000 100% 34.2 970s
1105356 21047 infeasible 35 -0.00001 -0.00000 100% 34.2 975s
1108871 21333 infeasible 37 -0.00001 -0.00000 100% 34.2 980s
1113586 21509 -0.00000 33 51 -0.00001 -0.00000 100% 34.2 985s
1119453 21746 infeasible 33 -0.00001 -0.00000 100% 34.2 990s
1124773 21852 -0.00000 33 14 -0.00001 -0.00000 100% 34.2 995s
1131253 22028 infeasible 30 -0.00001 -0.00000 100% 34.2 1000s
1135958 22148 -0.00000 36 20 -0.00001 -0.00000 100% 34.2 1005s
1140116 22215 -0.00000 36 21 -0.00001 -0.00000 100% 34.2 1010s
1146114 22242 infeasible 33 -0.00001 -0.00000 100% 34.2 1015s
1152954 22345 infeasible 29 -0.00001 -0.00000 100% 34.2 1020s
1158986 22311 infeasible 36 -0.00001 -0.00000 100% 34.2 1025s
1165532 22386 infeasible 31 -0.00001 -0.00000 100% 34.2 1030s
1170163 22392 -0.00000 33 47 -0.00001 -0.00000 100% 34.2 1035s
1175112 22533 cutoff 37 -0.00001 -0.00000 100% 34.2 1040s
1181558 22764 -0.00000 33 13 -0.00001 -0.00000 100% 34.2 1045s
1186149 22846 -0.00000 37 16 -0.00001 -0.00000 100% 34.2 1050s
1190203 22957 -0.00000 36 19 -0.00001 -0.00000 100% 34.2 1055s
1194842 23077 -0.00000 37 18 -0.00001 -0.00000 100% 34.2 1060s
1200736 23155 cutoff 35 -0.00001 -0.00000 100% 34.2 1065s
1205980 23239 -0.00000 32 77 -0.00001 -0.00000 100% 34.3 1070s
1210709 23266 -0.00000 33 49 -0.00001 -0.00000 100% 34.3 1075s
1216354 23327 infeasible 35 -0.00001 -0.00000 100% 34.3 1080s
1222904 23297 -0.00000 35 39 -0.00001 -0.00000 100% 34.3 1085s
1228247 23313 infeasible 35 -0.00001 -0.00000 100% 34.3 1090s
1233029 23303 -0.00000 30 43 -0.00001 -0.00000 100% 34.4 1095s
1239191 23311 -0.00000 36 38 -0.00001 -0.00000 100% 34.4 1100s
1244913 23428 -0.00000 34 20 -0.00001 -0.00000 100% 34.4 1105s
1251560 23680 -0.00000 29 37 -0.00001 -0.00000 100% 34.4 1110s
1257845 23935 infeasible 30 -0.00001 -0.00000 100% 34.4 1115s
1264160 24084 -0.00000 31 24 -0.00001 -0.00000 100% 34.4 1120s
1270176 24185 infeasible 34 -0.00001 -0.00000 100% 34.4 1125s
1273831 24182 infeasible 34 -0.00001 -0.00000 100% 34.4 1130s
1277377 24273 infeasible 37 -0.00001 -0.00000 100% 34.4 1135s
1280790 24272 -0.00000 31 15 -0.00001 -0.00000 100% 34.4 1140s
1286292 24249 -0.00000 30 39 -0.00001 -0.00000 100% 34.4 1145s
1292111 24250 -0.00000 29 25 -0.00001 -0.00000 100% 34.4 1150s
1297481 24287 cutoff 32 -0.00001 -0.00000 100% 34.4 1155s
1302307 24335 -0.00000 27 13 -0.00001 -0.00000 100% 34.4 1160s
1306526 24372 infeasible 30 -0.00001 -0.00000 100% 34.4 1165s
1313138 24353 infeasible 34 -0.00001 -0.00000 100% 34.4 1170s
1319226 24421 -0.00000 32 34 -0.00001 -0.00000 100% 34.4 1175s
1325838 24595 infeasible 34 -0.00001 -0.00000 100% 34.4 1180s
1332555 24769 -0.00000 31 15 -0.00001 -0.00000 100% 34.4 1185s
1339151 24811 infeasible 33 -0.00001 -0.00000 100% 34.4 1190s
1345249 24838 cutoff 37 -0.00001 -0.00000 100% 34.4 1195s
1352452 24845 -0.00000 29 72 -0.00001 -0.00000 100% 34.4 1200s
1359691 24868 infeasible 33 -0.00001 -0.00000 100% 34.4 1205s
1367172 24865 -0.00000 32 15 -0.00001 -0.00000 100% 34.4 1210s
1373059 24939 infeasible 37 -0.00001 -0.00000 100% 34.4 1215s
1377336 24900 -0.00000 32 14 -0.00001 -0.00000 100% 34.4 1220s
1382165 24965 -0.00000 33 54 -0.00001 -0.00000 100% 34.4 1225s
1387592 25094 -0.00000 29 35 -0.00001 -0.00000 100% 34.4 1230s
1392887 25148 -0.00000 34 23 -0.00001 -0.00000 100% 34.4 1235s
1399461 25163 -0.00000 35 33 -0.00001 -0.00000 100% 34.4 1240s
1405391 25205 -0.00000 32 14 -0.00001 -0.00000 100% 34.4 1245s
1411291 25347 -0.00000 33 14 -0.00001 -0.00000 100% 34.4 1250s
1416541 25353 -0.00000 33 13 -0.00001 -0.00000 100% 34.4 1255s
1421223 25413 cutoff 33 -0.00001 -0.00000 100% 34.4 1260s
1427662 25714 -0.00000 33 21 -0.00001 -0.00000 100% 34.4 1265s
1432237 25834 -0.00000 27 12 -0.00001 -0.00000 100% 34.4 1270s
1436215 25899 -0.00000 33 13 -0.00001 -0.00000 100% 34.4 1276s
1438718 25887 -0.00000 25 31 -0.00001 -0.00000 100% 34.4 1280s
1440459 25909 -0.00000 35 28 -0.00001 -0.00000 100% 34.4 1286s
1443434 25980 -0.00000 31 15 -0.00001 -0.00000 100% 34.4 1290s
1446948 25968 cutoff 34 -0.00001 -0.00000 100% 34.4 1295s
1450604 25961 -0.00000 30 16 -0.00001 -0.00000 100% 34.4 1300s
1453660 25968 infeasible 38 -0.00001 -0.00000 100% 34.4 1305s
1457262 25979 -0.00000 34 12 -0.00001 -0.00000 100% 34.4 1310s
1461553 26013 infeasible 33 -0.00001 -0.00000 100% 34.4 1315s
1467035 26064 infeasible 33 -0.00001 -0.00000 100% 34.4 1320s
1472095 26247 infeasible 34 -0.00001 -0.00000 100% 34.4 1325s
1478730 26364 -0.00000 31 24 -0.00001 -0.00000 100% 34.4 1330s
1484287 26407 -0.00000 36 16 -0.00001 -0.00000 100% 34.4 1335s
-
Official comment
This post is more than three years old. Some information may not be up to date. For current information, please check the Gurobi Documentation or Knowledge Base. If you need more help, please create a new post in the community forum. Or why not try our AI Gurobot?. -
When your bound is 0, then the MIPGap will always be 100% by definition and lose its meaning. It looks like your optimal solution point has an objective value of 0 or very close to it. For such cases, it might be useful to define an absolute MIPGap of, e.g., 1e-5. This will terminate the solution process if \(|z_P - z_D| \leq 10^{-5}\).
If you insist on proving and finding the best solution possible, i.e., best bound = best feasible point, then you could try using the no relaxation heuristic or setting the MIPFocus parameter to 1.
0
Post is closed for comments.
Comments
2 comments